注目高まる安全な原発 日本がトップ独走、次世代型「高温ガス炉」 国が開発推進

2014.8.25 11:17 (1/4ページ)原発・エネルギー政策

scn14082511170004-n1
次世代原子炉

水を使わないため、水素爆発や水蒸気爆発の懸念もない

2030年の実用化目指す

 東京電力福島第1原発事故の教訓を受け、過酷事故のリスクが低い次世代の原子炉「高温ガス炉」が脚光を浴びている。放射性物質の放出や炉心溶融などが起きないとされ、2030年の実用化を目指して実験が進んでおり、国は研究開発を積極的に推進していく方針だ。(伊藤壽一郎)

自然に停止

 ヘリウムガスを冷却材に使う高温ガス炉は、基本的な仕組みは既存の原発と同じだ。ウラン燃料の核分裂反応で生じた熱でタービンを動かし、電力を生み出す。だが過酷事故の発生リスクは極めて低いという。

 茨城県大洗町にある日本原子力研究開発機構の高温ガス炉の試験研究炉「HTTR」。ここで4年前、運転中に炉心冷却装置を停止する実験が行われた。福島第1原発事故と同じ状況だ。原子炉は、いったいどうなったか。

 「何も起こらず自然に停止した。何もしなくても安全だった」

同機構原子力水素・熱利用研究センターの国富一彦センター長はこう話す。
 

 炉心冷却を停止すると、通常の原発は温度上昇で危険な状態に陥る。
しかし、HTTRは停止とほぼ同時に原子炉の出力がゼロになり、温度は一瞬上昇しただけで安定していた。放射能漏れや炉心溶融は、もちろん起きなかった。

scn14082511170004-p1


ソース:  http://sankei.jp.msn.com/science/news/140825/scn14082511170004-n1.htm
 


 炉心溶融せず

 高温ガス炉の安全性が高いのは、燃料の保護方法、炉心の構造材や冷却方式が従来と全く異なるためだ。

 既存の原発では、運転時の炉心温度は約300度。燃料の被覆材や、燃料を収める炉心構造材は耐熱温度が千数百度の金属製で、冷却材には水を使う。福島第1原発事故は冷却手段が失われ、炉心は2千度前後の高温になり溶融して燃料が露出。溶けた金属と冷却水の水蒸気が反応して水素爆発を起こし、放射性物質の飛散に至った。

 これに対しHTTRの炉心温度は950度と高いが、球状(直径0・9ミリ)の燃料は耐熱温度1600度のセラミックスで覆われており、これを2500度の超高温に耐える黒鉛製の炉心構造材に収めている。冷却材のヘリウムガスは化学的に安定で燃焼しない。これが炉心の高い熱エネルギーを運ぶため、高温ガス炉と呼ばれる。

 冷却手段が失われても炉心は理論上、1600度を超えないため、燃料の被覆が熱で壊れて放射能が漏れることはない。黒鉛製の構造材も溶融しない上、放熱効果が高いため自然に熱が逃げて冷える。

 水を使わないため水素爆発や水蒸気爆発の懸念もない。核分裂反応も、冷却停止で炉心温度がわずかに上がると、ウランは分裂しない形で中性子を吸収するため自然に停止するそうだ。

 海外の追い上げも

 高温ガス炉を循環するヘリウムガスの熱は、水素製造など幅広い用途が期待されている。水を熱分解して水素を作るには通常、約4千度の熱が必要だが、同機構はヨウ素と硫黄を利用し約900度で製造する方法を開発しており、燃料電池用などの水素需要に応えられるという。

 高温ガス炉は既存の原発と比べて発電コストが3分の2、使用済み燃料の量は4分の1で、水を使わないため海岸ではなく内陸にも建設できるなど利点は多い。

 ただ、規模を大きくすると冷却効率が下がるため、発電出力は大型原発の4分の1の30万キロワットにとどまるという課題もある。このためHTTRは1991年に着工、98年に初臨界を達成しながら、長く注目が集まらなかった。

 ところが東日本大震災で「規模より安全」が重視されると一躍、存在感が高まった。

政府は4月に策定したエネルギー基本計画で、次世代原子炉として研究開発の推進を明記。文部科学省の作業部会が9月に開発計画を発表する見通しだ。

 世界で稼働している高温ガス炉は現在、HTTRと中国の700度の試験炉だけ。950度での運転を実現した日本は研究のトップを独走している。

 だが中国と米国は試験炉の次の段階である実証炉の建設計画が進行中で、韓国でも950度の実証炉の検討が始まっており、追い上げが激しくなってきた。

 国富氏は「安全技術は既に確立している。海外勢に追い越されないように日本も早く実証炉を作り、2030年ごろの実用化を目指したい」と話している。