働きアリ

勉強をしている子どもたちが、悩み、知りたい、理解したいと思いながら、今までは調べる方法がなかった事柄を、必要かつ十分な説明でわかりやすく記述したサイトです

エネルギー

science 電力量と熱量、水の温度上昇、J(ジュール)とcal(カロリー)

電流の単元で、電流によって発生する熱量を求めたり、その熱によって上昇する水の温度を求める問題があります。

電流の単元で熱や水の温度変化が出てくるのはあまりにも唐突(とうとつ)ですが、それには次のような理由があります。


電力量と熱量の関係

熱は、物理学では重要な一分野ですが、中学では熱を単独で取り扱わないので、電流の単元で「ついでに」扱います。

ついでに扱ってよい根拠が、エネルギー保存の法則あるエネルギーが別のエネルギーに変わってもエネルギーの総量は変化しないという物理学の法則)です。

電流によって消費されたエネルギーは、熱のエネルギーに変わることがあります。
そして、エネルギー保存の法則により、電流の消費した電気エネルギーと、電流によって発生した熱エネルギーとは等しい量であると考えてよいのです。

つまり、電力量(電気エネルギー)=熱量(熱エネルギー)

電流によって消費された電気エネルギー=電力量(単位はJ(ジュール))=電力(W)×(s)

だから、電流によって発生した熱エネルギー=熱量(単位はJ(ジュール))=電力量=電力(W)×(s)


例題1:電熱線に2Vの電圧を加えたところ、3Aの電流が流れた。この電熱線に1分間電流を流した。
(1)このときの電力量はいくらか。
(2)このとき発生する熱量はいくらか。



(解答)

(1)電力(W)=電圧(V)×電流(A)、そして、電力量(J)=電力(W)×(s)より、
電力量=(2×3)×60=360J

(2)熱量(J)=電力量(J)=電力(W)×(s)より、6×60=360J


電力量と熱量と水の温度上昇の関係

さらに、電流の単元なのに、突然、水の温度上昇をたずねる問題が出てきます。

その理由は、熱の発生は、温度の上昇によって確かめられ、温度の上昇を調べる方法としては、水を使うのが一番わかりやすいからです(温度、摂氏(セ氏)(℃)自体が水をもとにして決められた単位です)。

そして、1gの水の温度を1℃上昇させるのに必要な熱量は4.2Jであることがわかっています(実験によって求められた数値です)。

1gの水の温度を1℃上昇させるのに必要な熱量が4.2Jであるということは、例えば、100gの水の温度を20℃上昇させるのに必要な熱量は、1gのときの100倍のさらに1℃のときの20倍ですから、4.2×100×20で求められることになります。

これを公式化すると、
が得た熱量(J)=4.2×水の質量(g)×水の上昇温度(℃)

水の温度上昇の問題では、この公式を使います。


例題2:14Ωの電熱線を20℃の水300gの中に入れて42Vの電圧を5分間加えた。
(1)電熱線に流れる電流は何Aか。
(2)水が得た熱量は何Jか。
(3)水の温度は何℃になったか。


(解答)

(1)オームの法則、電流(I)=電圧(V)/抵抗(R)より、42/14=3A

(2)熱量(J)=電力量=電力(W)×秒(s)より、42×3×300=37800J

(3)1gの水の温度を1℃上昇させるのに必要な熱量は4.2Jであり、
が得た熱量(J)=4.2×水の質量(g)×水の上昇温度(℃)
の公式が成り立ちます。

この問題で水が得た熱量は、(2)より37800Jでした。

4.2×水の質量×水の上昇温度=37800だから、
4.2×300×上昇温度=37800
上昇温度=37800÷(4.2×300)
上昇温度=30℃

もとの温度が20℃だったので、水の温度は20+30=50℃になったわけです。
水と熱








J(ジュール)とcal(カロリー)の関係

さらにこの単元では、突然、calカロリー)なる単位が顔を出します。
そのわけは、次のようなものです。

現在の教科書は、エネルギー保存の法則を一貫させた単位系である国際単位系(SI)に準拠して書かれています。
国際単位系では、熱量の単位はJ(ジュール)です。
ところが、以前は熱量の単位としてcal(カロリー)を使っていました(現在でも栄養学ではcalが使われます)。

今の教科書でcalを使う必然性はないのですが、以前の「なごり」から、calが顔を出すことがあるのです。

では、cal(カロリー)とはいかなる単位かと言うと、水1gの温度を1℃上昇させるのに必要な熱の量を1calと定義したものがcal(カロリー)です(つまり、1calは、「そう、決めた」だけです)。

このことから、
水が得た熱量(cal)=1×水の質量(g)×水の上昇温度(℃)
という公式が導かれます。

また、
水が得た熱量(cal)=1×水の質量(g)×水の上昇温度(℃)
であり、
が得た熱量J)=4.2×水の質量(g)×水の上昇温度(℃)
だから、
1cal=4.2J
です。

さらに、1÷4.2=0.238…となるので、
1J=0.24cal
です。
この式は、1Jの熱量で、水1gの温度が1秒で0.24℃上昇することを表わしています。


例題3:抵抗が4Ωの電熱線に6Vの電圧を3分間加えて、電熱線で発生する熱量を調べた。このとき、電熱線で発生した熱量は何Jか。また、この水が3分間に得た熱量は何calか。

(解答)

まず、熱量(J)=電力量(J)=電力(W)×(s)の公式を使います。

オームの法則、電流(I)=電圧(V)/抵抗(R)より、電流=6/4=1.5A

熱量(J)=電力(W)×(s)
=(6×1.5)×(60×3)
=9×180
=1620

電熱線で発生した熱量は1620Jです。

次に、何calであるかを求めます。

このとき、もっとも簡便な方法は、1cal=4.2Jを使って、比の式を作るやり方です。

求めるcalをxとすると、
1:4.2=x:1620
4.2x=1620
x=385.7…

答えは386calです。





***** 理科の全目次はこちら、ワンクリックで探している記事を開くことができます *****

science 中学理科とJ(ジュール)…電力量・熱量・仕事・位置エネルギー

平成24年度以降、中学理科の教科書では、電力量熱量仕事エネルギーの単位として、J(ジュール)が使われます。

中学2年では、電流の単元で、電力量熱量の単位としてJジュール)をもちいます。

中学3年では、運動とエネルギーの単元で、仕事エネルギーの単位としてJジュール)をもちいます。


電力量

電気器具の能力を表わす量が電力であるといわれますが、電気器具が1秒間消費する電気の量電力だという定義のほうがわかりやすい。

電力直列つなぎの乾電池を思いうかべてください。乾電池電力2が多いほど、電圧は大きく、流れる電流も大きいので、豆電球は明るく光ります。
私たちは、「電気の量」を「豆電球の明るさ」で意識します。
この「電気の量」が電力ですから、電力は電圧と電流で表わされます。
つまり、電力(W)=電圧(V)×電流(A)です。



そして、消費された電力総量電力量であり、電力量を表わす単位がJジュール)です。

1秒間という瞬間の電気の量が電力であり、電気をある時間使ったときに消費された電気の総量が電力量です。
電力量
電力量2










だから、電力は、(電圧×電流)×秒、つまり、電力×秒で表わされます。
電力量(J)=電力(W)×(s)


また、Jジュール)は、エネルギーの量を示す単位であり、電力量は、消費された電力の総量を表わすと同時に、消費された電力によって発生した電気エネルギーの量も表わしています。


熱量

電流の持つエネルギーは、他のエネルギーに変わることがあります。
電気エネルギーから他のエネルギーに変わるものとして、熱、光、音、運動などのエネルギーをあげることができます。

そのうちの熱エネルギーの量を、熱量といいます。
熱量の単位も、エネルギーなのでJジュール)です。

エネルギー保存の法則(あるエネルギーが別のエネルギーに変わってもエネルギーの総量は変化しないという物理学の法則)により、電気エネルギーが熱エネルギーに変わってもエネルギーの量は同じです。

だから、電気エネルギーがすべて熱エネルギーにかわったとすると、
熱エネルギー熱量
=電気エネルギー
=電力量
=電力×秒
となります。

つまり、電流によって発生する熱エネルギーの量、つまり熱量も、
熱量=電力量=電力×秒の式で求めることができます。

熱量J=電力(W)×(s)


また、実験で、質量1gの温度を1度上昇させるのに必要な熱エネルギーの量、熱量は、4.2Jであることがわかっています。

このことから、
熱量(J)=4.2×水の質量(g)×上昇温度(°C)
の式が成り立ちます。


仕事

物体に力を加えて、加えた力の向きに物体を動かしたとき、理科では、力は物体に仕事をしたといいます。

仕事の量もエネルギーの量で表わします。

仕事J)=の大きさ(N)×力の向きに動いた距離(m)

物を、ある高さまで持ち上げるときには、物体にはたらく重力と同じ大きさの力で持ち上げないといけないので、
仕事J)=重力の大きさ(N)×持ち上げた高さ(m)
となります。

物体を横にひっぱって動かすときは、物体にはたらいている摩擦力と同じ大きさの力でひっぱらないといけないので、
仕事J)=摩擦力の大きさ(N)×力の向きに動いた距離(m)
となります。

電力量(J)と熱量(J)と仕事(J)とは、エネルギーを表わす量としては同じ量ですから、1Jの電力量は1Jの仕事をするということになります。


仕事率

1秒間にする仕事の大きさが仕事率です。

仕事率W)=仕事J)÷s


ところで、電力量(J)=電力(W)×秒(s)でした。
この式を変形して、電力(W)=電力量(J)÷秒(s)

このことから、電力と仕事率とは同じ、つまり、電力は電気による仕事率を表わしていたということがわかります。


位置エネルギー

基準面からある高さにある物体が持っている、仕事をできる能力が位置エネルギーです。

位置エネルギーの大きさも、エネルギーなのでJ(ジュール)で表わします。
位置エネルギーある質量を持ち、ある高さにある物体は、同じ質量を持つ物体を同じ高さにまで持ち上げることができる、つまり、仕事をすることができるはずです。

位置エネルギーの大きさは、するとしたらできるであろう仕事の量と等しくなります。




だから、
位置エネルギーJ)=その物体にはたらく重力N)×基準面からの高さm
となります。


まとめ

J(ジュール)は、中学理科では4つのものを表わします。

電力量J)=電力(W)×(s)

熱量J=電力(W)×(s)

仕事J)=の大きさ(N)×力の向きに動いた距離(m)

位置エネルギーJ)=その物体にはたらく重力N)×基準面からの高さm

電力量は電気のエネルギー量、熱量は熱のエネルギー量、仕事は仕事のエネルギー量、位置エネルギーは高い位置にある物体が持つエネルギー量を表わしています。



***** 理科の全目次はこちら、ワンクリックで探している記事を開くことができます *****

science 力学的エネルギー保存の法則の発展問題

位置エネルギーと運動エネルギーは相互に移り変わります。
また、位置エネルギーと運動エネルギーの和は常に一定です(力学的エネルギー保存の法則)。

この稿では、位置エネルギーと運動エネルギーの移り変わりについて、入試によく出題される発展問題の解き方を考察します。
(エネルギーの基本事項に関してはこちらを参照してください。)

考える際のポイントは次の2つです。

ポイント1
位置エネルギーは、高さ質量比例します。
物体の質量は変わらないので、位置エネルギーを考えるときは高さに目をつけます。
運動エネルギーは速さの2乗質量比例します。
物体の質量は変わらないので、運動エネルギーを考えるときは速さに目をつけます。

ポイント2
どの位置に物体があっても、力学的エネルギー保存の法則より、位置エネルギー+運動エネルギー=一定です。
だから、位置エネルギーが0のときに物体が持っている運動エネルギーは、最初、運動エネルギーが0のときにその物体が持っていた位置エネルギーと等しくなります。


力学的エネルギー保存の法則の発展問題

例題1:
図のような斜面で球体である物体を転がす実験をした。摩擦や空気による影響はないものとして、あとの問いに答えなさい。
力学的エネルギー保存
実験1、A点から球体を静かに転がし、斜面CF上での球体の到達点の高さを測定した。

実験2、斜面CFの傾斜をゆるくして斜面CGとし、実験1と同様の実験をおこなった。

(1)実験1で、球体の到達点はどこか。

(2)図2は、実験1で、A〜E点間を運動する球体の位置エネルギーの変化を表したものである。このときの球体の運動エネルギーの変化を図2にかきなさい。
図2







(3)実験2で、球体はG点から飛び出した。そのあと、A点の高さまで到達するか。



(解き方)

(1)実験1で、球体の到達点はどこか。


位置エネルギーの大きさを求める公式がありますが(
位置エネルギー(J)=物体にはたらく重力(N)×基準面からの高さ(m))、この問題は、公式をもちいて実際の位置エネルギーを求めさせる問題ではありません。

位置エネルギーは高さ質量比例すること、物体の質量は変わらないので、結局、位置エネルギーを考えるときは高さだけに注目すればよいこと、この2点をもちいて考察する問題です。

最初、手をはなしたときに球体のもつエネルギーは、高さ目盛り3で表される位置エネルギーのみです(手をはなした瞬間の運動エネルギーは0です)。

図のBで速さが最大になることで運動エネルギーは最大になり、このときの位置エネルギーは、基準面に到達したので、0です。
そして、図のCまで運動エネルギーはそのまま。
そこから坂道をのぼることで、速さは小さくなり、運動エネルギーは減少し、かわりに基準面からの高さが増すことで位置エネルギーが増加していきます。

力学的エネルギー保存の法則より、位置エネルギー+運動エネルギー=一定高さの目盛り3で表される位置エネルギー

最後に球体が止まる場所をたずねる問題ですから、そのときの運動エネルギーは0、つまり、高さの目盛り3で表される位置エネルギーをもつ場所まで到達します。

答えは、F点です。


(2)図2は、実験1で、A〜E点間を運動する球体の位置エネルギーの変化を表したものである。このときの球体の運動エネルギーの変化を図2にかきなさい。

運動エネルギーを求める公式、運動エネルギー()=1/2×質量(kg)×速さ(m/秒)×速さ(m/秒)を使う問題ではありません。

運動エネルギーそのものを求めることはできないのです(正確に言うと、「中学生にそこまでは要求されない」)。

しかし、力学的エネルギー保存の法則、位置エネルギー+運動エネルギー=一定、この問題だと、位置エネルギー+運動エネルギー=一定=高さの目盛り3で表される位置エネルギーより、運動エネルギー自体は求められないものの、運動エネルギーが、高さの目盛りに象徴される位置エネルギーどれだけ分に相当するのかは求められます。

運動エネルギーそのものはわからない⇒位置エネルギーに置き換えて考える⇒位置エネルギー自体もその量を求める必要はない⇒位置エネルギーは高さに比例するから、高さの目盛りで位置エネルギーを推測する、という順になります。

長々と書きましたが、要するに、この球体のもっているエネルギーは常にその和が目盛りの高さ3相当分であるということですべての問いを解いていくということです。

位置エネルギー+運動エネルギー=一定=高さの目盛り3で表される位置エネルギーより、問い(2)の答えは次の図になります。
例題1解答









(3)実験2で、球体はG点から飛び出した。そのあと、A点の高さまで到達するか。

位置エネルギー+運動エネルギー=一定=高さの目盛り3で表される位置エネルギーより、点Aの高さまで到達し、その地点での運動エネルギーが0になるように運動するのであれば、点Aの高さにまで到達できます。しかし、そうなるには球体が次の図のように運動する必要があります。
解答2




これはありえません。

実際の球体の動きは次のようになるはずです。
解答3




つまり、球体が一番高くなったときでも、球体の速さは0ではないので、運動エネルギーも0ではありません。ということは、
力学的エネルギー保存の法則より、位置エネルギーが高さの目盛りの3相当分になることはないということです。

飛び出した球体が点Aの高さまで到達することはありません。


例題2:
例題2図のように、質量の等しい2個の鉄球P、Qを、それぞれなめらかな斜面上のA点、B点に置いて同時に静かに手をはなすと、鉄球P、Qはどうなるか。次のア〜エから選び、記号で答えなさい。ただし、区間ABと区間BCの距離は等しい。
ア 鉄球PはC点に達する前に斜面上で鉄球Qに追いつく。
イ 鉄球PはC点で鉄球Qに追いつく。
ウ 鉄球Pは水平面上で鉄球Qに追いつく。
エ 鉄球Pは鉄球Qに追いつかない。


(解き方)

やはり、次の2つのポイントをもちいて考えます。

ポイント1
位置エネルギーは、高さ質量比例します。
物体の質量は変わらないので、位置エネルギーを考えるときは高さに目をつけます。
運動エネルギーは速さの2乗質量比例します。
物体の質量は変わらないので、運動エネルギーを考えるときは速さに目をつけます。

ポイント2
どの位置に物体があっても、力学的エネルギー保存の法則より、位置エネルギー+運動エネルギー=一定です。
だから、位置エネルギーが0のときに物体が持っている運動エネルギーは、最初、運動エネルギーが0のときにその物体が持っていた位置エネルギーと等しくなります。

まず、区間ABの距離と区間BCの距離が等しいことから、Aの高さはBの高さの2倍です。
Aの高さを2の高さ、Bの高さを1の高さとします。
鉄球Pは、手をはなした瞬間、高さ2で表される位置エネルギーを持っています(このときの運動エネルギーは0です)。
鉄球Qは、手をはなした瞬間、高さ1で表される位置エネルギーを持っています(このときの運動エネルギーは0です)。

鉄球Pが点Bに到達したとき、高さ1で表される位置エネルギーを失い、それが運動エネルギーにかわっています。このときの運動エネルギーは、高さ1で表される位置エネルギーに相当するエネルギーです。
鉄球Qが点Cに到達したとき、やはり、高さ1で表される位置エネルギーを失い、それが運動エネルギーにかわっています。このときの運動エネルギーは、高さ1で表される位置エネルギーに相当するエネルギーです。
ということは、点Bに到達した鉄球Pと、点Cに到達した鉄球Qの運動エネルギーが等しいということです。
質量の等しい2つの鉄球の持っている運動エネルギーが等しいということは、点Bに到達した鉄球Pと点Cに到達した鉄球Qの速さも等しいということです。
だから、
ア 鉄球PはC点に達する前に斜面上で鉄球Qに追いつく。
イ 鉄球PはC点で鉄球Qに追いつく。

の2つは、ありえません。

次に、鉄球Qは点Cに到達したあと、高さ1で表される位置エネルギーに相当する運動エネルギーをもったままで水平面を動き続けます。
鉄球Pは点Cに到達したあと、高さ2で表される位置エネルギーに相当する運動エネルギーをもったままで水平面を動き続けます。
鉄球Pの持つ運動エネルギーが鉄球Qの運動エネルギーの2倍だということは、点Cに到達して水平面を移動し始めると、鉄球Pのほうが鉄球Qよりも速いということです。
だから、
ウ 鉄球Pは水平面上で鉄球Qに追いつく。
ということになります。


例題3:
AD、DE、EFの3本のレールを図のようにつなげ、水平部分から1mの高さに重さ10Nの小球をおいて静かに手をはなしたところ、EF上のある高さまでのぼって再び滑り降り始めた。水平部分を基準面とし、摩擦や空気の抵抗はないとして、次の問いに答えなさい。
例題3(1)一般に、基準面から30cmの高さにある質量1kgの物体のもつ位置エネルギーは、基準面から20cmの高さにある質量1.25kgの物体のもつ位置エネルギーの何倍か。
(2)小球がC、D、Gの各点にあるとき、小球のもつ運動エネルギーは、それぞれ何Jか。
(3)小球がD点にあるときの速さは、G点にあるときの速さの何倍だったか。
例題3の2(4)レールEFを、図のように短くて傾きが急なEHにかえた。H点から飛び出した小球は、そのあとどのような運動をするか。図のア〜ウから選び、記号で答えなさい。


(解き方)

(1)一般に、基準面から30cmの高さにある質量1kgの物体のもつ位置エネルギーは、基準面から20cmの高さにある質量1.25kgの物体のもつ位置エネルギーの何倍か。

位置エネルギーは、高さ質量比例する」を使って求めます。

30cmの高さにある質量1kgの物体のもつ位置エネルギーは、20cmの高さにある質量1.25kgの物体に比較すると、高さで30÷20=1.5倍、質量で1÷1.25=0.8倍。
1.5×0.8=1.2倍。


(2)小球がC、D、Gの各点にあるとき、小球のもつ運動エネルギーは、それぞれ何Jか。

この問題の場合、運動エネルギーを直接求めることはできません。

力学的エネルギー保存の法則、位置エネルギー+運動エネルギー=一定を使って考えます。
「位置エネルギーが0のときに物体が持っている運動エネルギーは、最初、運動エネルギーが0のときにその物体が持っていた位置エネルギーと等しくなる」を活用します。

この小球が最初B点でもっていた位置エネルギーは、
位置エネルギー(J)=物体にはたらく重力(N)×基準面からの高さ(m)
より、
10N×1m=10J。

つまり、この問題では、常に、
位置エネルギー+運動エネルギー=10J
です。

C点のとき

小球がC点でもっている位置エネルギーは、10N×0.4cm=4J。
だから、C点でもつ運動エネルギーは10−4=6J。

D点のとき

基準面に達したので、位置エネルギーは0。
だから、運動エネルギーは10J。

G点のとき

G点で小球がもつ位置エネルギーは、10N×0.75m=7.5J。
だから、G点でもつ運動エネルギーは10−7.5=2.5J。


このように、運動エネルギーそのものを求めないで、まず位置エネルギーを求めて、その結果から運動エネルギーを推測するのが解くときのコツです。


(3)小球がD点にあるときの速さは、G点にあるときの速さの何倍だったか。

問い(2)で求めたことから、D点の運動エネルギーは10J、G点の運動エネルギーは2.5J。
運動エネルギーは、10÷2.5=4倍。

「運動エネルギーは速さの2乗質量比例する」から、速さの2乗が4倍ということになり、速さは2倍。


(4)レールEFを、図のように短くて傾きが急なEHにかえた。H点から飛び出した小球は、そのあとどのような運動をするか。図のア〜ウから選び、記号で答えなさい。

例題1の(3)で考察したように、運動エネルギーが0ではないので、もとの高さまで到達することはありません。

答えはア。



***** 理科の全目次はこちら、ワンクリックで探している記事を開くことができます *****

science 位置エネルギー・運動エネルギー・力学的エネルギー保存の法則

他のものに力を加えることができる能力のことをエネルギーといいます。

エネルギーには、電気エネルギー、エネルギー、化学エネルギー、エネルギー、エネルギー、ばねなどの弾性エネルギーなどがありますが、この稿で取り上げるのは、位置エネルギー運動エネルギーです。

両者を合わせて力学的エネルギーといいます。

(仕事とエネルギーの関係についてはこちらの『仕事とエネルギー』を参照してください。)


位置エネルギー

高いところにある物体は、落下すると他のものを動かすことができます。
この、高いところにある物体がもつエネルギーを位置エネルギーといいます。

ある面を基準にしたとき、基準から高いところにある物体ほど大きい位置エネルギーを持つはずです。
また、質量の大きい物体ほど大きい位置エネルギーを持ちます。
つまり、位置エネルギーは、高さ質量比例します。

(物体の質量は変わりません。だから、位置エネルギーを考えるときは高さに目をつけます。)


エネルギーの単位J(ジュール)

基準面から高さ1mのところにある、質量100g(この物体にはたらいている重力1N(ニュートン))の物体が持つ位置エネルギーを(ジュール)と決めました。


位置エネルギーを求める式

位置エネルギー)=物体にはたらく重力)×基準面からの高さ


運動エネルギー

運動をしている物体は、ものに衝突するとものを動かすことができます。
この、運動している物体がもつエネルギーを運動エネルギーといいます。

運動をしている物体は、速さが速いほど大きい運動エネルギーをもちます。そして、運動エネルギーは速さ2乗に比例することがわかっています(運動エネルギーを求める式についてはこちらも参照のこと)。
また、質量の大きい物体ほど運動エネルギーは大きくなります。
つまり、運動エネルギーは速さの2乗質量比例します。

(物体の質量は変わりません。だから、運動エネルギーを考えるときは速さに目をつけます。)

物体を別のものに衝突させたとき、質量が2倍になったときの運動エネルギーは2倍ですが、速さが2倍になったときの運動エネルギーは2×2=4倍になります。
つまり、質量が2倍になるより速さが2倍になるほうが衝突の衝撃は4÷2=2倍になるということです。
交通標語でスピードの出し過ぎをいましめる文句があることには理由があるのです。


運動エネルギーを求める式

運動エネルギー)=1/2×質量kg)×速さm/秒)×速さm/秒


力学的エネルギー保存の法則

斜面に転がる物体を置いて手をはなします。物体はだんだん速さをましながら斜面をころげ落ちていくはずです。

最初に手をはなした瞬間、一番高い位置にあるので位置エネルギー最大です。手をはなした瞬間の速さは0ですから運動エネルギーは最小のです。

一番下の位置まで物体がころげ落ちたとき、高さは最小であり、その位置を基準面とすると位置エネルギーです。逆に、物体の速さはその地点で最大になっているので運動エネルギー最大です。

このように、位置エネルギーと運動エネルギーは相互に移り変わります。また、位置エネルギーと運動エネルギーの和は常に一定です。
このことを、力学的エネルギー保存の法則といいます。

力学的エネルギー保存の法則 位置エネルギー+運動エネルギー=一定


ふりこ

ふりこは、位置エネルギーと運動エネルギーの変換が(摩擦や空気抵抗がなければ)永遠にくりかえされる道具です。
ふりこ






ふりこ2ふりこのおもりが左端と右端にあるとき、高さが最大で速さは0です。
このとき、位置エネルギーは最大で、運動エネルギーは0です。

ふりこのおもりが一番下にきたとき、基準面に達しているので高さは0となり、位置エネルギーは0です。おもりは下にきたときが一番速くなり、このとき運動エネルギーは最大です。

どの位置におもりがあっても、力学的エネルギー保存の法則より、位置エネルギー+運動エネルギー=一定です。

例えば、おもりが一番下にきたとき、そのおもりが持っている運動エネルギーは、左端と右端の位置にあるおもりが持っている位置エネルギーと等しくなります。



***** 理科の全目次はこちら、ワンクリックで探している記事を開くことができます *****

記事検索
訪問者数

    全記事を、科目別・学年別に探したいときは⇒働きアリ全目次
    記事検索
    最新コメント
    ご指導いただいた方々に感謝!
    ・2013.8.8.ぽんたさんにご指摘いただき、「社会科頻出事項(1)【地理編】」の間違いを修正することができました。
    ・2013.10.29.ヤマトさんのご指摘で、「超速まとめ 一次関数」の誤記2つを訂正することができました。
    ・2013.11.08.chappyさんにご教示いただき、「地球と宇宙(3)(太陽系・銀河系)」の光年の誤りを訂正しました。
    ・2013.12.08.中3さんのご指摘で、「相似(3)平行線と比」の記述間違いを訂正できました。ありがとうございます。
    ・2013.12.23.龍空さん、Mさん、名無しさんに教えていただき、「数量を文字式で表す」、「方程式の解き方」、「文学史」の間違いを訂正しました。
    ・2014.1.23.龍空さんに見つけていただき、「中学英語のまとめ(14) 疑問詞」の間違いを訂正しました。
    ・2014.1.28.龍空さんに教えていただき、「中学英語のまとめ(18) 現在完了」の記述ミスを修正しました。
    ・2014.2.22.いのりーさんのご指摘で、「【超速まとめ】 方程式の解き方」の記述間違いを訂正できました。感謝します。
    ・2014.2.25.名無し@受験生さんにご教示いただき、「高校入試 英語(4) 【英文法−その2−】」の記述ミスを修正しました。
    ・2016.10.28塾講師さんに記述の誤りを教えていただき、「English 中学英語のまとめ(20) 接続詞」の間違いを修正することができました。ありがとうございます。
    月別アーカイブ
    後援
    NPO法人
    全国放課後週末支援協会


    ・リンクフリーです。
    ・学習塾や家庭で自由にご活用ください。
    livedoor プロフィール

    アリ

    QRコード
    QRコード
    • ライブドアブログ