働きアリ

勉強をしている子どもたちが、悩み、知りたい、理解したいと思いながら、今までは調べる方法がなかった事柄を、必要かつ十分な説明でわかりやすく記述したサイトです

表面積

math 回転体の体積・表面積とパップス・ギュルダンの定理

今から2300年も前にエジプトのパップスが発見し、16世紀にギュルダンが再発見した、『パップス・ギュルダンの定理』といわれるものがあります。

回転体と、回転する図形の重心との間に成り立つ定理です。

回転体・・・平面図形を、同一平面上の一つの直線のまわりに1回転させたときにできる立体のこと。円柱、円錐、球などが代表的な回転体です。

重心・・・ある物体を1点で支えられるとき、その点を重心といいます。素朴に言うと、ある図形の真ん中が重心です。
点対称の図形では対称の中心が重心になります。
三角形の重心については、こちらを参照。


パップス・ギュルダンの定理とは

回転体の体積=回転する図形の面積×重心の移動距離

一例として、一辺を軸として長方形を回転させる場合をとりあげます。
円柱1











円柱ができます。
円柱2この円柱の体積は、体積を求める公式
底面積×高さ
で、求めることができます。
2×2×π×5=20π
です。

パップス・ギュルダンの定理
回転体の体積=回転する図形の面積×重心の移動距離
を使うと、
回転する図形の面積は、長方形の面積である5×2=10であり、
重心の移動距離は、半径1cmの円周になりますから1×2×π=2πですから、
回転する図形の面積×重心の移動距離=10×2π=20π
ということになります。


パップス・ギュルダンの定理を使うと簡単に体積が求められる問題

例題1:図のような底辺2cm、高さ3cmの平行四辺形を、1つの頂点を通る直線のまわりに回転させたとき、できる図形の体積を求めよ。
円錐台1











円錐台2左図の、円錐台から円錐をくりぬいた形ができます。

大きい円錐の体積を求めて、上の小さい円錐の体積と、くりぬいた円錐の体積をひいても求められますが、計算がやや煩雑です。
4×4×π×6×1/3-2×2×π×3×1/3-2×2×π×3×1/3
=32π-4π-4π
=24π




円錐台3パップス・ギュルダンの定理をもちいると、簡単に答えが出ます。

平行四辺形の対角線の交点が重心です。

回転体の体積
=回転する図形の面積×重心の移動距離

=(2×3)×(2×2×π)
=24π




パップス・ギュルダンの定理を使わないと中学生には体積が求めらない問題

例題2:図のような半径2cmの円を、円周から2cmの距離にある直線のまわりに回転させたとき、できる図形の体積を求めよ。

トーラス1









左図のような、ドーナツ形(トーラスといいます)ができます。
トーラス2小学生、中学生範囲では、体積を求めることはできません。

パップス・ギュルダンの定理を使うと求められます。

円の中心が重心です。

回転体の体積
=回転する図形の面積×重心の移動距離

=(2×2×π)×(4×2×π)
=4π×8π
=32π^2
(32π2乗)


パップス・ギュルダンの定理と表面積

パップス・ギュルダンの定理は、表面積にも応用することができます。

円柱の側面積を、パップス・ギュルダンの定理を使って求めてみましょう。

円柱側面1長さ4cmの線分を、2cm離れた直線を軸にして回転します。

線分には「長さ」しかありませんが、線分が回転したときの回転体の面積を、うすっぺらい図形が回転したときの「体積」だとみなします。





円柱側面2軸に平行な線分を回転させると、円柱の側面になります。

回転体の面積を、円柱の側面積だと考えると、
4×(2×2×π)
=16π
です。



パップス・ギュルダンの定理を応用すると、
回転する図形の面積は4cmの線分の長さの4、重心の移動距離は半径2cmの円周だということになります。

回転体の体積(この場合は、線分が回転したときの面積ですが)
=回転する図形の面積×重心の移動距離

=4×(2×2×π)
=16π
です。

このように、パップス・ギュルダンの定理は、表面積を求めるときにも使えることがわかります。


軸に斜めの線分が回転する場合を考えてみましょう。
円錐側面1







円錐側面2底面の半径が4cmの円錐の側面積になります。
重心の、軸との距離は2cmです。

回転体の体積(この場合は、線分が回転したときの面積です)
=回転する図形の面積×重心の移動距離

=4×(2×2×π)
=16π


円錐の側面積は、母線×半径×πで求められますが(こちらを参照)、パップス・ギュルダンの定理を使って、同じ式を導くことができるわけです。




*****数学の全目次はこちら、ワンクリックで探している記事を開くことができます*****

math 円柱、内接する球、円錐の体積と表面積

円柱の側面積と、円柱に内接する球の表面積

円柱の側面積と、円柱に内接する球の表面積との間にはおもしろい関係が成り立っています。

円柱の球の表面積底面の半径がrcm、高さが2rcmの円柱に、半径rcmの球が内接しています。

球の表面積は、4πr^2です。

円柱の側面積はどうなるでしょうか。

円柱の側面の面積は、縦が2rcm、横が底面の円の周と等しいのでr×2×πの長方形の面積と等しくなります。
よって、円柱の側面積は2r×2πr=4πr^2です。

つまり、円柱側面積と、その円柱の底面と側面に内接する表面積とは等しいということがわかります。



円柱と、円柱に内接する円錐と、円柱に内接する球の体積の関係

円柱と、円柱の底面と側面に内接すると、円柱の上下の底面に内接する円錐体積の間にもおもしろい関係が成り立っています。

円柱・円錐・球の体積円錐の体積は、底面積×高さ×1/3の公式より、r×r×π×2r×1/3=2/3πr^3です。

球の体積は、4/3πr^3です。

円柱の体積は、底面積×高さの公式より、r×r×π×2r=2πr^3です。

よって、円錐の体積:の体積:円柱の体積の比は、
2/3πr^3:4/3πr^3:2πr^3
=2/3:4/3:2
=2:4:6
=123

円錐の体積:球の体積:円柱の体積=1:2:3となっていることがわかります。




*****数学の全目次はこちら、ワンクリックで探している記事を開くことができます*****

記事検索
訪問者数

    全記事を、科目別・学年別に探したいときは⇒働きアリ全目次
    記事検索
    最新コメント
    ご指導いただいた方々に感謝!
    ・2013.8.8.ぽんたさんにご指摘いただき、「社会科頻出事項(1)【地理編】」の間違いを修正することができました。
    ・2013.10.29.ヤマトさんのご指摘で、「超速まとめ 一次関数」の誤記2つを訂正することができました。
    ・2013.11.08.chappyさんにご教示いただき、「地球と宇宙(3)(太陽系・銀河系)」の光年の誤りを訂正しました。
    ・2013.12.08.中3さんのご指摘で、「相似(3)平行線と比」の記述間違いを訂正できました。ありがとうございます。
    ・2013.12.23.龍空さん、Mさん、名無しさんに教えていただき、「数量を文字式で表す」、「方程式の解き方」、「文学史」の間違いを訂正しました。
    ・2014.1.23.龍空さんに見つけていただき、「中学英語のまとめ(14) 疑問詞」の間違いを訂正しました。
    ・2014.1.28.龍空さんに教えていただき、「中学英語のまとめ(18) 現在完了」の記述ミスを修正しました。
    ・2014.2.22.いのりーさんのご指摘で、「【超速まとめ】 方程式の解き方」の記述間違いを訂正できました。感謝します。
    ・2014.2.25.名無し@受験生さんにご教示いただき、「高校入試 英語(4) 【英文法−その2−】」の記述ミスを修正しました。
    ・2016.10.28塾講師さんに記述の誤りを教えていただき、「English 中学英語のまとめ(20) 接続詞」の間違いを修正することができました。ありがとうございます。
    月別アーカイブ
    後援
    NPO法人
    全国放課後週末支援協会


    ・リンクフリーです。
    ・学習塾や家庭で自由にご活用ください。
    livedoor プロフィール

    アリ

    QRコード
    QRコード
    • ライブドアブログ