アルゼンチンに本拠をおくFEUという団体が、地球温暖化に伴って2020年の世界の食料生産はどうなるかという気候影響評価の報告書をアメリカで発表しました[PDFファイル]。英語圏のマスメディアで、「温暖化が進むと食料不足が起きる見こみなので、温暖化防止を急ぐべきだ」という観点や、「温暖化による害を大げさに書きたてて不安をあおるのはけしからん」という観点の報道がされたようです。残念ながら、イギリスの新聞Guardian (ガーディアン)の記事が伝えているように、この報告書は、温暖化に関する科学的見通しの使いかたをまちがえていました。2020年に、大気中の二酸化炭素濃度は410 ppm、他の温室効果気体も二酸化炭素に換算した濃度は490 ppmに達するとしたところまではよいのですが、それに伴って全球平均地上気温が産業革命前を基準として少なくとも+2.4℃だけ高くなるとしてしまったのです。この数値は、温室効果気体濃度490 ppm相当に対する「定常応答」を使ってしまったようです。
[2011-01-21追記: RealClimateのGavin Schimidt (ガヴィン・シュミット)さんによる記事で指摘されていたことですが、FEUの温暖化の見積もりが大きくなりすぎた原因としては、定常応答を使ってしまったことに加えて、温室効果気体濃度490 ppm相当というエーロゾルの効果を含めない見積もりを使ってしまったことも効いています。エーロゾルの効果は複雑ですが、どちらかといえば太陽放射の反射をふやすものであり、予測も困難ですが急に減らせるとは考えにくいので、それを含めるとむしろ二酸化炭素換算410 ppmが妥当な値です。]
こういうまちがいをする人がふえてほしくないので、ここで概念の整理をしておきます。
定常応答
気候システムにとっての外部条件が一定ならば、気候システムにはいるエネルギーと出るエネルギーの量はつりあい、気候システムの保有するエネルギー量は一定値をとると考えられます。気候システムの状態量、たとえば気温は、季節変化、日周期変化、毎日の天気に伴う変化をしていますが、そういう変化を平均してしまえば、(近似としてですが)時間とともに変化しない定常状態にあると考えられます。
気候の変化を理屈から考えていくときは、まず、違った外部条件がそれぞれ長期間持続している場合に気候システムがどういう定常状態に落ち着くかを考え、その定常状態の差を与えた外部条件の違いに対する応答と考えます。現実には外部条件は時間とともに変化しますが、まず話が簡単になる定常状態から考え始めるのです。
ここでは、大気中の二酸化炭素濃度は外部条件とみなすことにします。それが与えられたとき、温度・速度・圧力・大気中の水蒸気量・海洋中の塩分などがどうなるかが気候システムの応答ですが、その代表として全球平均地上気温に注目します。真鍋さんとWetherald (ウェザラルド)さんが1967年に発表した鉛直1次元モデル実験と1975年に発表した3次元大気大循環モデル実験以来、二酸化炭素濃度「2倍」と「1倍」の条件をそれぞれ与えて気候の定常状態を求め、その全球平均地上気温の差を見ることがよく行なわれます。この数値は「二酸化炭素濃度倍増に対する定常応答」です。このような計算が数多くされた結果わかってきたことですが、全球平均地上気温の増加分はほぼ二酸化炭素濃度の対数に比例するので、「1倍」の濃度がたとえば280 ppmであっても350 ppmであっても「倍増」に対する応答の大きさはあまり変わりません。1979年に、乏しい情報から、この数値は1.5℃と4.5℃の間にあると推測されました。たまたまですが、その後の研究の進展によってもこの数値範囲は修正の必要がなさそうです。(ただしここで、水蒸気以外の大気成分、大陸氷床、植生分布は、気候システム内の変数ではなく外部条件とみなしています。)
ここで「定常応答」と表現しましたが、むしろ「平衡応答」(英語ではequilibrium response)のほうがよく使われる用語です。この「平衡」は気候システムのエネルギーの出入りがつりあっていることであって、エネルギー保存の式の時間変化項が0であることとも言えますが、熱力学用語で言えば、熱平衡(熱力学的平衡)ではなく、非平衡定常状態です。わたしは熱平衡とまぎれるのを避けるために「定常」という表現をしますが、世の中で「平衡応答」という用語が使われている場合は、熱力学から見てまちがいだと怒ったりしないで、気象学を勉強してきた人の方言のようなものとして読みかえて理解してくださるようお願いします。
過渡応答
実際には外部条件が時間とともに変化します。それに対する気候システムの応答を過渡応答(英語ではtransient response)といいます。もし気候システムが外部条件の変化に即時に応じるのならば、過渡応答は各時点の定常応答をつないだものになります。しかし実際には遅れがあります。二酸化炭素濃度の変化に対して、気温の変化は定常応答をつないだものより遅れて変化するのです。それは、ふろおけモデルの記事で述べたように、二酸化炭素濃度の変化に伴って変化するのはエネルギーの流れであるのに対して、平均気温はエネルギーのたまりに伴う量だからです。気候システムの中で大気と海洋は常にエネルギーを交換しており、海洋のほうが質量が桁違いに大きいので、ここで重要になるたまりは海洋の内部エネルギーです。
二酸化炭素濃度に対する過渡応答の古典的な数値実験として、Spelman (スペルマン)さんと真鍋さんが1984年に発表したものがあります。大気海洋結合大循環モデルを理想化した海陸分布のもとで動かしました。まず二酸化炭素濃度「1倍」と「4倍」を与えてそれぞれの定常状態を計算します。二酸化炭素濃度4倍増に対する定常応答がわかります。次に、現実にはありえないことですが、「1倍」の実験の途中で突然二酸化炭素濃度を4倍にして、その後の経過を追います。すると気温は、陸と海では陸のほうがやや早く変化しますが、平均して30年後に定常応答の約70%に達します。大気の対流圏と、海洋の表面から深さ約500メートルくらいまでがほぼ同じように定常応答に近づきます。海洋のもっと深いところの暖まりかたはずっとゆっくりしていて、千年くらいかかって定常応答に近づくようです。
この実験はいろいろな点で現実と違いますが、現実にも、「海洋表層の熱容量のために過渡応答は定常応答よりも数十年遅れる」ということが成り立っていると考えられています。なお、流れとたまりの関係を考えればわかると思いますが、遅れると言っても、二酸化炭素濃度の時系列の形が一定の時間だけ遅れて気温に現われるわけではなく、時間軸上でなめらかにされたような形で効いてきます。(また、気温の時系列にはそれに関係のない変動も混ざるでしょう。)
今では多くの研究機関が共通の濃度シナリオに対する過渡応答の計算をしています。たとえば、IPCC第4次報告書第1部会の巻の図10.26には、複数のシナリオについて、上のほうに与えた二酸化炭素その他の濃度、下のほうに得られた全球平均地上気温(複数の数値モデルを使っていることによる幅をもつ)が示されています。FEUがしたような気候影響評価には、このような計算結果(この図という意味ではなくもっと詳しい情報)から2020年付近の10年間ぐらいのところを読み取って使うべきだったのでした。
気候感度
さて、「気候感度」(英語ではclimate sensitivity)ということばもよく使われます。本来は、気候システムが外部条件の変化に対してどれだけ敏感に変化するかという意味です。
今では、とくにことわらなければ、二酸化炭素倍増に対する定常応答をさすことが多くなっています。
昔はそうではありませんでした。わたしが書いて1993年に発表した文章[2011-03-31リンク先変更] (阿部彩子さんと共著で日本気象学会の「気象研究ノート」に出た文章の一部)では、気候感度の数値は、太陽放射の強さ(いわゆる太陽定数)が1%変化したら全球平均気温がどれだけ変わるかをさしています。これはRamanathanさんとCoakleyさんが1978年に出した解説の表現にならったものです(「気象研究ノート」には違う文献をあげてしまいましたが)。
今でも、「二酸化炭素濃度に対する気候感度は太陽定数に対する気候感度とほぼ同じであるはずだ」といった議論をすることがありますが、その場合の気候感度は、対流圏界面(対流圏と成層圏の境)での下向き放射エネルギーフラックス密度の違いに応じた全球平均地上気温の違いをさします。
masudako
[2011-01-21追記: RealClimateのGavin Schimidt (ガヴィン・シュミット)さんによる記事で指摘されていたことですが、FEUの温暖化の見積もりが大きくなりすぎた原因としては、定常応答を使ってしまったことに加えて、温室効果気体濃度490 ppm相当というエーロゾルの効果を含めない見積もりを使ってしまったことも効いています。エーロゾルの効果は複雑ですが、どちらかといえば太陽放射の反射をふやすものであり、予測も困難ですが急に減らせるとは考えにくいので、それを含めるとむしろ二酸化炭素換算410 ppmが妥当な値です。]
こういうまちがいをする人がふえてほしくないので、ここで概念の整理をしておきます。
定常応答
気候システムにとっての外部条件が一定ならば、気候システムにはいるエネルギーと出るエネルギーの量はつりあい、気候システムの保有するエネルギー量は一定値をとると考えられます。気候システムの状態量、たとえば気温は、季節変化、日周期変化、毎日の天気に伴う変化をしていますが、そういう変化を平均してしまえば、(近似としてですが)時間とともに変化しない定常状態にあると考えられます。
気候の変化を理屈から考えていくときは、まず、違った外部条件がそれぞれ長期間持続している場合に気候システムがどういう定常状態に落ち着くかを考え、その定常状態の差を与えた外部条件の違いに対する応答と考えます。現実には外部条件は時間とともに変化しますが、まず話が簡単になる定常状態から考え始めるのです。
ここでは、大気中の二酸化炭素濃度は外部条件とみなすことにします。それが与えられたとき、温度・速度・圧力・大気中の水蒸気量・海洋中の塩分などがどうなるかが気候システムの応答ですが、その代表として全球平均地上気温に注目します。真鍋さんとWetherald (ウェザラルド)さんが1967年に発表した鉛直1次元モデル実験と1975年に発表した3次元大気大循環モデル実験以来、二酸化炭素濃度「2倍」と「1倍」の条件をそれぞれ与えて気候の定常状態を求め、その全球平均地上気温の差を見ることがよく行なわれます。この数値は「二酸化炭素濃度倍増に対する定常応答」です。このような計算が数多くされた結果わかってきたことですが、全球平均地上気温の増加分はほぼ二酸化炭素濃度の対数に比例するので、「1倍」の濃度がたとえば280 ppmであっても350 ppmであっても「倍増」に対する応答の大きさはあまり変わりません。1979年に、乏しい情報から、この数値は1.5℃と4.5℃の間にあると推測されました。たまたまですが、その後の研究の進展によってもこの数値範囲は修正の必要がなさそうです。(ただしここで、水蒸気以外の大気成分、大陸氷床、植生分布は、気候システム内の変数ではなく外部条件とみなしています。)
ここで「定常応答」と表現しましたが、むしろ「平衡応答」(英語ではequilibrium response)のほうがよく使われる用語です。この「平衡」は気候システムのエネルギーの出入りがつりあっていることであって、エネルギー保存の式の時間変化項が0であることとも言えますが、熱力学用語で言えば、熱平衡(熱力学的平衡)ではなく、非平衡定常状態です。わたしは熱平衡とまぎれるのを避けるために「定常」という表現をしますが、世の中で「平衡応答」という用語が使われている場合は、熱力学から見てまちがいだと怒ったりしないで、気象学を勉強してきた人の方言のようなものとして読みかえて理解してくださるようお願いします。
過渡応答
実際には外部条件が時間とともに変化します。それに対する気候システムの応答を過渡応答(英語ではtransient response)といいます。もし気候システムが外部条件の変化に即時に応じるのならば、過渡応答は各時点の定常応答をつないだものになります。しかし実際には遅れがあります。二酸化炭素濃度の変化に対して、気温の変化は定常応答をつないだものより遅れて変化するのです。それは、ふろおけモデルの記事で述べたように、二酸化炭素濃度の変化に伴って変化するのはエネルギーの流れであるのに対して、平均気温はエネルギーのたまりに伴う量だからです。気候システムの中で大気と海洋は常にエネルギーを交換しており、海洋のほうが質量が桁違いに大きいので、ここで重要になるたまりは海洋の内部エネルギーです。
二酸化炭素濃度に対する過渡応答の古典的な数値実験として、Spelman (スペルマン)さんと真鍋さんが1984年に発表したものがあります。大気海洋結合大循環モデルを理想化した海陸分布のもとで動かしました。まず二酸化炭素濃度「1倍」と「4倍」を与えてそれぞれの定常状態を計算します。二酸化炭素濃度4倍増に対する定常応答がわかります。次に、現実にはありえないことですが、「1倍」の実験の途中で突然二酸化炭素濃度を4倍にして、その後の経過を追います。すると気温は、陸と海では陸のほうがやや早く変化しますが、平均して30年後に定常応答の約70%に達します。大気の対流圏と、海洋の表面から深さ約500メートルくらいまでがほぼ同じように定常応答に近づきます。海洋のもっと深いところの暖まりかたはずっとゆっくりしていて、千年くらいかかって定常応答に近づくようです。
この実験はいろいろな点で現実と違いますが、現実にも、「海洋表層の熱容量のために過渡応答は定常応答よりも数十年遅れる」ということが成り立っていると考えられています。なお、流れとたまりの関係を考えればわかると思いますが、遅れると言っても、二酸化炭素濃度の時系列の形が一定の時間だけ遅れて気温に現われるわけではなく、時間軸上でなめらかにされたような形で効いてきます。(また、気温の時系列にはそれに関係のない変動も混ざるでしょう。)
今では多くの研究機関が共通の濃度シナリオに対する過渡応答の計算をしています。たとえば、IPCC第4次報告書第1部会の巻の図10.26には、複数のシナリオについて、上のほうに与えた二酸化炭素その他の濃度、下のほうに得られた全球平均地上気温(複数の数値モデルを使っていることによる幅をもつ)が示されています。FEUがしたような気候影響評価には、このような計算結果(この図という意味ではなくもっと詳しい情報)から2020年付近の10年間ぐらいのところを読み取って使うべきだったのでした。
気候感度
さて、「気候感度」(英語ではclimate sensitivity)ということばもよく使われます。本来は、気候システムが外部条件の変化に対してどれだけ敏感に変化するかという意味です。
今では、とくにことわらなければ、二酸化炭素倍増に対する定常応答をさすことが多くなっています。
昔はそうではありませんでした。わたしが書いて1993年に発表した文章[2011-03-31リンク先変更] (阿部彩子さんと共著で日本気象学会の「気象研究ノート」に出た文章の一部)では、気候感度の数値は、太陽放射の強さ(いわゆる太陽定数)が1%変化したら全球平均気温がどれだけ変わるかをさしています。これはRamanathanさんとCoakleyさんが1978年に出した解説の表現にならったものです(「気象研究ノート」には違う文献をあげてしまいましたが)。
今でも、「二酸化炭素濃度に対する気候感度は太陽定数に対する気候感度とほぼ同じであるはずだ」といった議論をすることがありますが、その場合の気候感度は、対流圏界面(対流圏と成層圏の境)での下向き放射エネルギーフラックス密度の違いに応じた全球平均地上気温の違いをさします。
masudako