1:帰社倶楽部φ ★2014/02/26(水) 17:08:26.72 ???0

1とその数自身以外では割り切れない2以上の自然数「素数」が、どのような間隔で分布するかに関する
新たな定理を米英の2人の数学者が26日までに見つけた。
数学者からは「教科書を書き換える」との声も上がる成果。素数は小学校でも習う基本的な数だが、謎も多い。
新定理の結論は理解しやすい内容で、幅広い関心を集めそうだ。

数が大きくなると、素数はまばらにしか見つからない。1~100の100個の中には2、3、5など
素数は25個あるが、同じ100個でも、10万1~10万100には素数は6個しかない。
では数が大きくなると、素数の間隔は際限なく離れていくのか。新定理は「そんなことはない」と否定する結果を示した。
数学者の本橋洋一博士(素数分布論)は「素数が極端に偏ることなく分布するという数学の大予想があり、
その初の証拠と言えるのではないか」と説明する。

新定理は、英国出身でカナダ・モントリオール大のジェームズ・メイナード博士(26)と、米カリフォルニア大
のテレンス・タオ教授(38)がそれぞれ独自に見つけた。
例えば、ある素数と次に大きい素数の2個を考える。19なら次は23で、19~23の5個の中に2個の素数がある。
だが数が大きくなっても、5個の自然数が並んだ中に素数が2個あるかは分からない。
新定理では、どんな大きな数でも、600個ごとに区切ると素数が2個含まれる場合があると分かった。
必ず2個あるわけではないが、2個の素数が含まれる600個ごとの区間は無限に存在する。今後の研究で、
区間の幅はもっと狭まる可能性があるが、現時点では600が最小の幅という。

2014/02/26 16:15 【共同通信】
http://www.47news.jp/CN/201402/CN2014022601001180.html
英国出身でカナダ・モントリオール大のジェームズ・メイナード博士(左)と、米カリフォルニア大のテレンス・タオ教授




2:帰社倶楽部φ ★2014/02/26(水) 17:08:37.06 ???0

次のようなイメージだ。ある大きな数nを例に考える。n、n+1、n+2…、n+1000…、n+2000…
と順番に大きくなる数字を書いた札を作り、600個ずつ同じ箱に入れる。すると、全ての箱に2個の素数が
入るとは限らないが、素数2個が入った箱は無限にあることになる。
素数が3個だと、区間の幅は39万5122個になる。理論的には何個の素数でも、必要な区間の幅は計算でき、
素数の分布について理解が非常に深まった。
本橋博士は新定理について「素晴らしいひらめきがないと絶対に気づかない。夢のような成果だ」と話している。



【科学】素数の間隔で新定理発見 極端な偏りなく分布、米英数学者
引用元:http://uni.2ch.net/test/read.cgi/newsplus/1393402106
5:名無しさん@13周年2014/02/26(水) 17:10:12.55 ID:5aNikMY90

落ち着いて素数を数えるんだ



6:名無しさん@13周年2014/02/26(水) 17:10:45.75 ID:hawE+X7m0

なんとなく気付いてました



7:名無しさん@13周年2014/02/26(水) 17:10:55.18 ID:Y8PfNnPo0

で何の役に立つのか?、と一般人は思う



291:名無しさん@13周年2014/02/26(水) 18:17:56.52 ID:4OsLAIse0

>>7
つ 暗号処理





362:名無しさん@13周年2014/02/26(水) 18:49:36.66 ID:aruNARDM0

>>7
素数の謎が解明されちゃうと、現代の暗号化技術は全て無意味になる。
CIAの極秘資料だろうがKGBの極秘資料だろうがネットワーク上に存在する
全ての情報が覗き放題。





14:名無しさん@13周年2014/02/26(水) 17:13:31.20 ID:eCM4C9mK0

俺が素数だ

 わかったか!



18:名無しさん@13周年2014/02/26(水) 17:14:14.39 ID:86z/TReR0

>>14
そーっすか





24:名無しさん@13周年2014/02/26(水) 17:16:20.31 ID:tKxs0n2OP

素数の間隔の方程式と原子を扱う方程式がピシャリ一致したとかテレビで見たことある



26:名無しさん@13周年2014/02/26(水) 17:16:45.68 ID:jSRjM+Mp0

もし関数で示せたらノーベル賞取れる?
アイデアはあるけど金にならないならどうでもいい



72:名無しさん@13周年2014/02/26(水) 17:24:41.27 ID:iMBV43XP0

>>26
フィールズ賞





40:名無しさん@13周年2014/02/26(水) 17:19:34.26 ID:3zSFwcn6O

>>26
前に数学板で不可能の証明されてたぞ。





122:名無しさん@13周年2014/02/26(水) 17:36:31.07 ID:B3qwKSW10

>>40
それはすごい
ゲーデルの不完全性定理を否定する
夢の理論だな





46:名無しさん@13周年2014/02/26(水) 17:20:16.02 ID:6w+5dntR0

数の世界の不思議なところは、こういう
法則は宇宙があってもなくても成立する
ってとこだな

物質があろうがなかろうが
ビッグバンがあろうがなかろうが

必ず成立する



130:名無しさん@13周年2014/02/26(水) 17:38:23.13 ID:RSxJunO60

2個入ってない時もあるんでしょ?
結局、間隔は無限には広がらないってだけでしょ
ってかほとんどランダムなんじゃ



145:名無しさん@13周年2014/02/26(水) 17:41:30.05 ID:31/c++IO0

>>130
素数の間隔は数字が大きくなっていくほどまばらになっていくけれど、
どんなに数字が大きくなっても、600以内の距離に2つの素数が収まる(密集した場所)があるということでしょう。
何十億桁という数字になっても、2つの素数が非常に近くにあるのは不思議じゃない?





164:名無しさん@13周年2014/02/26(水) 17:44:53.78 ID:HfOuxwWY0

>>145
そういうことだろうね。
素数はべき乗則があるから平均でみると平均間隔はどんどん広がるんだけど
600以内なら2つ以上みつかるものが無限にあるわけで
スケールに対してなんかの極値統計みたいになってるのかもな
もしかするとマルチフラクタルかもな





183:名無しさん@13周年2014/02/26(水) 17:48:43.82 ID:YdqYDH/V0

∀x
[x∈N⇒ ∃y、a、b∈N
y≦a<b≦y+599∧a,bは素数]
この書き方で良いんだっけ?



342:名無しさん@13周年2014/02/26(水) 18:39:16.26 ID:r1LIDtaJ0

>>183
これが一番正確なのかな。
意味はわかるけど書き方がそれで正しいのかよく知らないww





356:名無しさん@13周年2014/02/26(水) 18:46:03.87 ID:r1LIDtaJ0

>>183
∀x
[x∈N⇒ ∃y、a、b∈N
x≦y≦a<b≦y+599∧a,bは素数]

こうじゃない?
書き方が正しいのかよくわからないがww





381:名無しさん@13周年2014/02/26(水) 18:59:32.25 ID:XU7qV5d10

素数ってのは規則性がよく分かってないけど
無限にあるってのは知られていました。

今回の発見は、ある連続する600個の整数の中に素数が2つ(以上)あったら、
それより大きい数からなる、連続する600個の整数のどっかにも必ず素数が2個(以上)
入ってるものがあるよ。

ということは、どれだけ数字が大きくなっても必ずどこかに
「連続する600個の整数に素数が2個(以上)含まれるものがある」ってことが分かって
この600という数字はどんどん狭くしていきたいなーってことなんだよね。



662:名無しさん@13周年2014/02/26(水) 21:32:38.34 ID:6y+3CaNaP

これって素数の密度を素数が2個以上含まれる区間の密度に置き換えただけなんじゃ…



681:名無しさん@13周年2014/02/26(水) 22:31:38.29 ID:r3e9sf100

数論なんて、おはじきに置き換えて考えればいい。
おはじきで割り算した結果そのものが表記法に依存するなどありえない。