入試関連データ

January 22, 2011

2008-2011のセンター数学IIBの得点分布変遷

2008年から2011年にかけてのセンター試験・数学IIBの得点分布の変遷です。

去年に比べて今年の平均点が下がったのは、9割以上を取った人が減っていることと、6割前後を取っていたであろう層が5割以下にいってしまった事によるものと思われます。


08-11センター数学IIB

↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

お問い合わせや、家庭教師のご依頼、受験勉強についてのご相談などは、以下へお願いいたします。
パソコンから→http://www.formzu.net/fgen.ex?ID=P62522594
携帯から→http://www.formzu.net/mfgen.ex?ID=P62522594


↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)


<問題集のプリント、絶賛販売中です!>

センター試験数学IA・侍従長はこう解いた


センター試験数学IIB・侍従長はこう解いた


基礎力徹底強化問題集・数学IA


基礎力徹底強化問題集・数学IIB




◆◇アフィリエイトはA8.net◇◆  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
登録・参加費一切無料!安心して始められます。
すでに850,000以上のサイトがエーハチネットに参加しています!
参加広告主は3000社以上。だからあなたのサイトに合った広告素材が選べます。
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
詳しくはこちら>> http://px.a8.net/svt/ejp?a8mat=1O4XE1+2BCPGY+0K+ZU2WJ


math_palace at 06:00|PermalinkComments(0)TrackBack(0)

January 21, 2011

2009-2011のセンター数学IAの得点分布変遷

この分布を見ると、今年(2011年度)のセンター試験は、2009年度の分布と同じような感じになっていることがわかります。


09-11センター数学IA

↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

お問い合わせや、家庭教師のご依頼、受験勉強についてのご相談などは、以下へお願いいたします。
パソコンから→http://www.formzu.net/fgen.ex?ID=P62522594
携帯から→http://www.formzu.net/mfgen.ex?ID=P62522594


↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)


<問題集のプリント、絶賛販売中です!>

センター試験数学IA・侍従長はこう解いた


センター試験数学IIB・侍従長はこう解いた


基礎力徹底強化問題集・数学IA


基礎力徹底強化問題集・数学IIB




◆◇アフィリエイトはA8.net◇◆  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
登録・参加費一切無料!安心して始められます。
すでに850,000以上のサイトがエーハチネットに参加しています!
参加広告主は3000社以上。だからあなたのサイトに合った広告素材が選べます。
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
詳しくはこちら>> http://px.a8.net/svt/ejp?a8mat=1O4XE1+2BCPGY+0K+ZU2WJ


math_palace at 13:21|PermalinkComments(0)TrackBack(0)

January 17, 2011

どこかよりかは遅いセンター速報

・数学IA(試験時間60分・100点満点)

<第1問>
[1] 無理数計算と絶対値のついた不等式(配点10点)

最初は有理化や無理数の計算などを手早くすることと、その後|Ax-B|<Cの形の絶対値のついた一次不等式を解くだけだが、慣れていないと混乱が起こるかも知れない。

[2] 集合と論理(配点10点)

(1)からいきなり反例を探すというところが斬新だが、それさえ見つけてしまえば、対偶はド・モルガンの定理ですぐに終わり、対偶が真であることがすぐわかるため、(3)はすぐに解ける。

<第2問> 二次関数(配点25点)

最初にグラフを決定し、その残ったパラメータbについての問題。(1)、(2)は上に凸なグラフなので、軸との交わり方や最大最小でミスをしやすい気はする。(2)では軸がx=2bであることを考慮してうまくできれば早く解ける。

<第3問> 三角比・平面図形(配点30点)

例年通り、前半が正弦定理・余弦定理などを用いた三角比の問題、後半が方べきの定理などを用いた平面図形の問題となっている。今年も左ページが三角比、右ページが平面図形。前半は円に内接する4辺の長さのわかった四角形の対角線と面積を求める極めて典型的な問題、後半は円と接線の関係と同一円周上に乗る4点の話が手早くできるかどうか。

<第4問> 場合の数・確率(配点25点)

今回は確率のみ。(1)は反復試行の確率がわかっていればあっさり終わる。(2)は一瞬、意図がわからないが、(1)での計算を反映させれば良いだけである。最後の期待値は各点についての確率を手際よく計算できればよい。

(所要時間)
ちなみに侍従長が解くのに掛かった時間は以下の通り。
第1問[1]3分 [2]4分・第2問9分・第3問10分・第4問8分…計34分

参考までに
2010年・第1問[1]3分[2]5分・第2問7分・第3問9分・第4問7分…計31分
2009年・第1問[1]3分[2]7分・第2問5分・第3問8分・第4問8分…計31分



・数学IIB(試験時間60分・100点満点--第3問から第6問は2問選択)

<第1問>

[1] 三角関数(配点15点)

t=sinθ+cosθと解くタイプの応用版で、t=sinθ+√3cosθのパターン。近年の三角関数の問題ではかなり簡単なレベル。

[2] 指数対数関数(配点15点)

log_(2)xをXとおき、Xについて調べたうえでというあたりはよく、1つ目の式の条件まではよい。その後、2つ目の式の条件を10以上の数字で手探りで探る必要があるのでそこに手間が掛かったかもしれない。

<第2問> 微分積分(配点30点)

最初、接線を求めたら、積分計算で面積を計算。その後、Uをaで表し、aで微分して最大最小を求める。流れ通りなので計算を的確にすれば早く終わるかと。

<第3問> 数列(配点20点)

分点公式が使えれば{x_n}の3項間漸化式になるが、階差数列{y_n}の漸化式が等比数列である(のが問題文からわかる)ので公比を求めればよい。n、n-1などを選ぶのが新しい。後半は(等差数列)×(等比数列)型の和の計算でそれは典型的である。

<第4問> 空間ベクトル(配点20点)

三角形OBCが直角三角形であることに気がつけば、後は普通の計算問題で標準的な問題といえる。とはいえ、始点がOになったりAになったりで混乱をした恐れはある。

(所要時間)
ちなみに侍従長が解くのに掛かった時間は以下の通り。
第1問[1]3分[2]5分・第2問13分・第3問8分・第4問11分…40分

参考までに
第1問[1]1分[2]5分・第2問7分・第3問9分・第4問10分…計32分
第1問[1]3分[2]6分・第2問15分・第3問14分・第4問14分…計52分



↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

お問い合わせや、家庭教師のご依頼、受験勉強についてのご相談などは、以下へお願いいたします。
パソコンから→http://www.formzu.net/fgen.ex?ID=P62522594
携帯から→http://www.formzu.net/mfgen.ex?ID=P62522594


↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)


<問題集のプリント、絶賛販売中です!>

センター試験数学IA・侍従長はこう解いた


センター試験数学IIB・侍従長はこう解いた


基礎力徹底強化問題集・数学IA


基礎力徹底強化問題集・数学IIB




◆◇アフィリエイトはA8.net◇◆  
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
登録・参加費一切無料!安心して始められます。
すでに850,000以上のサイトがエーハチネットに参加しています!
参加広告主は3000社以上。だからあなたのサイトに合った広告素材が選べます。
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
詳しくはこちら>> http://px.a8.net/svt/ejp?a8mat=1O4XE1+2BCPGY+0K+ZU2WJ


math_palace at 00:00|PermalinkComments(0)TrackBack(0)

March 08, 2010

「侍従長はこう解いた」シリーズ〜2010年度センター数学IIB

今度は数学IIBです。

ちなみに今年は、最後のページにIA、IIBとも最後のページに「問題分析」を入れてあります。


「侍従長はこう解いた」シリーズ〜2010年度センター数学IIB


↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)

math_palace at 06:00|PermalinkComments(0)TrackBack(0)

March 07, 2010

「侍従長はこう解いた」シリーズ〜2010年度センター数学IA

2009年度に引き続き、今年度も遅くなりましたが、

「侍従長はこう解いた」センター試験2010

をお送りいたします。

まずは、数学IAです。

PDFでお送りいたします。

「侍従長はこう解いた」センター試験2010


↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)

math_palace at 06:00|PermalinkComments(0)TrackBack(0)

January 29, 2010

2010年度センター試験・数学IIB・得点分布

c8f81eba.jpg図は、2008、2009、2010年度のセンター試験・数学IIBの得点分布です。

2008→2009については、2009年が高得点を取りにくく、また、低すぎる得点になることもなかったこともあり、「2009年度は難しかった」と言われた割には平均点はあまり下がらなかったわけです。
したがって、「平均点」の変動は少なかったけれども、「上位層」の中での話で言えば、概して点数が下がってしまっていたのは間違いがないようです。


一方、2010年度ですが、山の頂上だけでなく、全体的に高得点の方によっています。
このことからも「今年は簡単だった」ということが言えます。

例年であれば30〜50点くらいの人達が、50点以上の方に移動したという様子がわかります。
また、完全に100点での「頭打ち」があり、上位層の優劣がこのテストでは付きづらかったとも言えると思います。

なお、25万人前後のなかで、満点を取った人人数は、
2008年度・約1100人→2009年度・約300人→2010年度・約9500人
という具合になっています。
その点でも、今年は満点も続出し「簡単だった」ということが言えると思います。


↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)

math_palace at 06:00|PermalinkComments(0)TrackBack(0)

January 28, 2010

2010年度センター試験・数学IA・得点分布

a4ad5c0a.jpg図は、数学IAの得点分布の2009年と2010年とを比較したものです。

こう見てみると、今年度(2010年度)の数学IAは、正規分布に近い形をしており、「試験」としてはよいものであったのかとも思われます。

予想では、上位の子はそこそこ高い点数を取っているのだろうと思っていたのですが、上位層も総崩れというのが今年度の分布からわかります。

なお、グラフからもわかりますが、満点を取った人の割合が去年の1/4になっています。


↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)

math_palace at 06:00|PermalinkComments(0)TrackBack(0)

January 19, 2010

センター試験2010・数学・どこかよりかは遅い速報

・数学IA(試験時間60分・100点満点)

例年通り, 手早く計算できるかどうかがポイントとなる. 受験では定番な典型的な問題が多く, 場合の数についてもよくある数え上げの手法を使えたかどうかがポイントとなる. 逆に, 「センター試験の数学IAだから」と安易な姿勢で臨んだ場合には失点が多かったかもしれない. また, 集合と論理の辺りで多少手間取った受験生は多かったかと思われる.

<第1問>(配点20点)

[1](8点)-数と式, 方程式と不等式
有理化の問題と2次方程式をたすき掛けの因数分解で解く問題が最初で, そのあとで, 登場してきた値の大小を比較する. 後半ではα<1<1/αに気づいた上でαと1/6の大小を手早く比較できたかどうかがポイントとなる.

[2](12点)-集合と論理
自然数を全体集合とする各集合の包含関係と, それにともなう「必要条件・十分条件」の問題. いずれの問題も, 「自然数をある数で割った余り(剰余類)」に対する問題が中心であり, この辺りの話に慣れていれば時間はかからないが, 慣れていない場合には最後の「ベン図」を選ぶ問題も含め難儀したものと思われる.


<第2問>(25点)-二次関数

2つの2次関数のグラフについての問題. 片方の頂点がもう一方の放物線上に乗っているときの条件を前提として計算を進めていく.

グラフを一つずつ考えていけば大丈夫であるので, ここで手早く解き, 時間に余裕を持たせたいところである.


<第3問>(30点)-三角比, 平面図形

見開きの左側(前半)が三角比, 右側(後半)が平面図形の問題. 前半は余弦定理, 正弦定理を手早く使えるかどうか. 特に(1)の最後, sin∠QPRについて正弦定理が適応できることを発見できたかどうかがポイントである. 後半は頭を切り換えて「方べきの定理」を適応し, その後, tanの計算や(3)での「直径に対する円周角」などの話を手早く処理できたかどうかがポイントとなる.

図形問題に慣れていないと, ここで時間を取ってしまった可能性はある.


<第4問>(25点)-場合の数, 確率

数字の書いてある球を取り出す際の場合の数と確率の問題. (1)では「数字を選んだ後で色を選んでいく」という典型的な数え方の手法を用いるが, それが身についていない場合には計算するのに時間が掛かったかもしれない. (1)の値さえ出てしまえば, (2)の確率はおまけに近い形で簡単に解ける.

(所要時間)
侍従長が解くのにかかった時間は下記の通り.
第1問[1]3分[2]5分・第2問7分・第3問9分・第4問7分…計31分
(参考までに2009年度は, 第1問[1]3分[2]7分・第2問5分・第3問8分・第4問8分…計31分)


・数学IIB(試験時間60分・100点満点--第3問から第6問は2問選択)

2009年の数学IIBに比べて計算量も少なく, 解きやすい問題が多かったのではないだろうか. 受験では典型的である問題が多く, それゆえに, 普段からの勉強で「典型的な問題のinput」をしっかりとしてきたかどうかが勝負の分かれ目になりそうである.

<第1問>(配点30点)

[1](12点)-指数対数, 2次方程式の解と係数の関係
特筆すべきことがないくらい易しい問題である. 128=2^7がすっと出てくれば, あとは流れに任せて計算をするだけ.

[2](18点)-三角関数, 3次方程式の解法
sinの値が等しくなるような角を求める話を誘導にしたがって進めていけばよく, 後半は, そこで出てくるπ/10のsinの値を3次方程式を解くことで求めていく問題. これも公式がアタマに入っていればさほど時間が掛からずに解けたであろう.


<第2問>(配点30点)-微分積分

三次関数のグラフにその曲線外の点から接線を引くときに何本引けるかを, 3次方程式の実数解の個数から求める典型的な問題で, 3次方程式の実数解の個数をグラフで考えるのも定番. 後半は元の3次関数のグラフを平行移動したグラフなどで囲まれる部分の面積で, グラフの共有点を求め, 上下関係を考えて積分をするだけである.

難易度は高くなく, 最後の積分計算もさほど手間が多くない.


<第3問>(配点20点)-数列

前半は群数列の問題. 群数列の問題では「第n群の末項が全体の何項目か」を考えていくことが定番であるが, この問題ではその考えにしたがって話を進めている. 前半最後で, n(3n-1)が約1200になるようなnをn(n-1/3)が約400になればいいということからn=20前後で当たりをつけられたかがポイント. 後半は階差型の数列の和の典型的な計算問題.


<第4問>(配点20点)-空間ベクトル

平行六面体の問題. 去年のように「図形的に計算をすると楽」なものではなく, ベクトルの内積などを使ってどんどん計算を進めていけば, 答えが出てくる. 途中, 直線と平面の直交条件があるが, これも誘導されているので迷うことはないだろう. その後, 3次の一次独立なベクトルについて係数比較をしてcを求め, cさえ求まれば|↑(EK)|はc|↑(EC)|なので, |↑(EC)|を求めればそれで済む.

計算もさほど複雑ではないので, かなり楽に計算ができたのではないだろうか.

(所要時間)
侍従長が解くのにかかった時間は下記の通り.
第1問[1]1分[2]5分・第2問7分・第3問9分・第4問10分…計32分
(参考までに2009年度は, 第1問[1]3分[2]6分・第2問15分・第3問14分・第4問14分…計52分)


↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

↓ネット講座、やっています。
ナレッジサーブ
講座名「まとめ直す高校数学IAIIB」
http://www.knowledge.ne.jp/lec1748.html



↓メルマガ、始まってます。

メルマガ購読・解除
 


携帯からは↓からどうぞ。
http://mobile.mag2.com/mm/0001047381.html


<お勧めの問題集です>
イメトレポイントチェック数学1・A (合格文庫)

イメトレ ポイントチェック数学2 (合格文庫 34)

イメトレ ポイントチェック数学B (合格文庫 35)

math_palace at 06:00|PermalinkComments(1)TrackBack(0)

November 06, 2009

大学別入試対策(東京工業大学編)

(東工大)

・2009年度入試についての回顧

2009年度入試における出題
1番:積分:放物線とその2接線で囲まれる部分の面積の最小
2番:一次変換:一次変換による不動直線
3番:整数:整数係数の2次方程式が実数解をもつ条件
4番:体積:空間内の放物線の回転体の体積


4題とも例年に比べると易しい問題が多かったかと思われる. したがって, 入試までかなりしっかりと数学の対策をしてきた受験生からすると, 満点に近い点数をとれたのではないかと思われる.

ただ, 「大学入試懇話会」(2009年5月に学習院大学にて行われた講演会)における東工大の藤田隆夫教授の話によれば, 「実際の受験生としてはそんなに「易しい」という状況ではないのではなかろうか」とのこと. 理工離れが進む中, 「工学部専科大学」のトップである東工大にもその不人気の影響が進んでいるのかもしれない.


・受験に向けての対策

まず, 配点から考えると, 総点950点(総点中センターは270点, センター数学は60点)のうち, 2次試験での数学は250点ある. 2次試験だけの点数(680点)で考えれば37%が数学の点数である. したがって, 数学での大幅な失点は当然のことながら合否に大きく影響を及ぼすこととなる.

微積など数学IIICが多く出題されるイメージがあるが, 実際には整数や確率といった問題もかなり出題されている. 分野が偏ることのない勉強が必要である.

奇を衒った問題が出ない分, 確実な数学の力が必要であり, 「典型的な問題」を身につけることをかなりの精度で行う必要がある. また, 普段から計算力をつけておくことも大切になる.



↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

math_palace at 06:00|PermalinkComments(0)TrackBack(0)

November 05, 2009

大学別入試対策(一橋大学編)

(一橋大)}

・2009年度入試についての回顧

2009年度入試における出題
1番:整数:整数の不定方程式の解
2番:三角関数:三角関数の取り得る値に対応する定数の条件と軌跡
3番:領域:放物線の頂点の通過領域
4番:平面図形:正三角形の辺に関しての折り返し操作の繰り返し
5番:確率:カードによる点の移動とその確率


例年に比べ, 問題全体としては難しくなったと思われる. しかしそれは, 中盤から後半に書けての問題であり, 第一問なんかは整数問題の中では定番な問題であり, 「完全敗退」ということはなかったはず.

確率の問題が考え方や計算がなかなか大変で, 「確実に確率を解く」という方針であった場合でも試験時間中に路線変更を余儀なくされたのではないだろうか.

1, 2, 4問の順番で処理をし, ここでなるべく確実に点を取りにかかるという方針で行けばうまくいったのではないだろうか.

・受験に向けての対策

まず, 一橋大の場合, 学部によって配点が異なることが重要である. 数学における配点は以下の通りである.

 商学部・250点/全1000点中(総点中250点がセンター, センター数学は50点)
経済学部・260点/全1000点中(総点中210点がセンター, センター数学は40点)
 法学部・180点/全1000点中(総点中270点がセンター, センター数学は50点)
社会学部・130点/全1000点中(総点中180点がセンター, センター数学は20点)


商学部においては2次試験の点数の内の1/3(=33%, 総点の内では1/4)が2次試験の数学の点数になるが, 社会学部の場合には2次試験の点数の内の16%(総点の内では13%)である. したがって, 学部に応じて数学に対してどの程度の重きを置いて勉強するべきかは変わってくる.

ただ, いずれにしても数学で点数をしっかり取るということを考えるのであれば, 東大の文系の数学よりもときには難しい問題を出すということを考えて勉強するべきである.

もちろん, 問題の中でも難しい問題は入試本番では手をつけない方向で望むのであるが, 普段から東大や一橋大レベルの入試問題に接していなければ, どれが簡単でどれが難しい問題なのかを見分けることは難しい.

なお, 聞いた話ではあるが, 一橋大学の数学の入試問題は, 約一年かけ, 様々な討議を重ねながらかなりしっかり作っているようである.


↓記事を読んだら、クリックをお願いいたしますm(_ _)m
 blogram投票ボタン

math_palace at 06:00|PermalinkComments(0)TrackBack(0)