問題1

(1) 和：\(\alpha + \beta = \frac{-11 + \sqrt{77}}{2} + \frac{-11 - \sqrt{77}}{2} = \frac{2 \times (-11)}{2} = -11 \)

積：\(\alpha \beta = \frac{-11 + \sqrt{77}}{2} \times \frac{-11 - \sqrt{77}}{2} = \frac{121 - 77}{4} = \frac{44}{4} = 11 \) ①

よって、\(\alpha, \beta \) を解とする2次方程式のひとつは、\(x^2 + 11x + 11 = 0 \) である。 ②

（2）\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta = (-11)^2 - 2 \times 11 = 11(11-2) = 99 \) これと①より

\[
\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{99}{11^2} = \frac{9}{11} \]

和：\(\left(1 + \frac{\alpha}{\beta}\right)^2 + \left(1 + \frac{\beta}{\alpha}\right)^2 = \left(\frac{\beta + \alpha}{\beta}\right)^2 + \left(\frac{\alpha + \beta}{\alpha}\right)^2 = \frac{(\alpha + \beta)^2}{\beta^2} + \frac{(\alpha + \beta)^2}{\alpha^2} = \frac{(\alpha + \beta)^2(\alpha^2 + \beta^2)}{\alpha^2 \beta^2} = \frac{(11)^2 \times 99}{11^2} \)

= 99

積：\(\left(1 + \frac{\alpha}{\beta}\right)\left(1 + \frac{\beta}{\alpha}\right) = \left(\frac{\beta + \alpha}{\beta}\right) \left(\frac{\alpha + \beta}{\alpha}\right) = \frac{(\alpha + \beta)^2}{\beta^2} \times \frac{(\alpha + \beta)^2}{\alpha^2} = \frac{(\alpha + \beta)^4}{\alpha^2 \beta^2} = \frac{(11)^4}{11^2} = 121 \)

よって、\(\left(1 + \frac{\alpha}{\beta}\right)^2 \) と \(\left(1 + \frac{\beta}{\alpha}\right)^2 \) を解とする2次方程式のひとつは、\(x^2 - 99x + 121 = 0 \) である。 ③

(3) (1)より、\(x^2 + 11x + 11 = 0 \) の解は \(\alpha, \beta \) なので、\(\alpha^2 + 11\alpha + 11 = 0 \), \(\beta^2 + 11\beta + 11 = 0 \) が成り立つ。

\(f(x) = x^3 + 10x^2 + x - 2 \) より

\(f(\alpha) = \alpha^3 + 10\alpha^2 + \alpha - 2 = \alpha^2 + 11\alpha + 11 \) で割ると

\(f(\alpha) = \alpha^3 + 10\alpha^2 + \alpha - 2 = (\alpha^2 + 11\alpha + 11)(\alpha - 1) + \alpha + 9 \) となり \(\alpha^2 + 11\alpha + 11 = 0 \) を用いると

\(f(\alpha) = \alpha + 9 \) となる。

同様に、\(f(\beta) = \beta + 9 \) となるから

\[
\frac{f(\alpha)}{f(\beta)} = \frac{\alpha + 9}{\beta + 9} = \frac{-11 + \sqrt{77} + 9}{-11 - \sqrt{77} + 9} = \frac{-11 + \sqrt{77} + 18}{-11 - \sqrt{77} + 18} = \frac{7 + \sqrt{77}}{7 - \sqrt{77}} = \frac{(7 + \sqrt{77})^2}{7^2 - 77} = \frac{49 + 77 + 14\sqrt{77}}{49 - 77}
\]

\[= \frac{126 + 14\sqrt{77}}{-28} = -\frac{9 + \sqrt{77}}{2} \] ④