近年、半導体や発光特性など、さまざまな機能を持った有機分子が多数報告されるようになりました。より優れた性質を引き出すための分子設計も研究が進んでおり、さまざまな骨格の機能性分子が登場しています。

 しかし、化合物の性能を決めるのは、何も分子の構造だけではありません。たとえば有機半導体などは、平面の基盤の上に薄膜を作って用いられることがほとんどです。この薄膜の出来が悪いと、化合物は持っているポテンシャルを発揮できません。ランダムにあちこちを向いて並んでいるのではなく、分子どうしが引きつけ合ってきちんと平面に並んでいれば、多くの面で有利になります。

 タイル張りの床のように、どこまでも一定のパターンで分子が並んでいくのが理想ですが、なかなかこうは行きません。薄膜は、ひとつの分子の周りに次の分子が並び、次々に成長してでき上がります。しかし、薄膜は1ヶ所のみから広がるのではなく、いくつかのポイントから同時進行で広がっていきます。このため、薄膜はいくつかの領域(ドメイン)に分かれてしまうのです。

domain
ドメインのできる様子の概念図

 ドメインがあると、薄膜の強度は低くなり、境界からひび割れたり剥がれたりしやすくなります。また、有機半導体などでは、分子から分子へ電子が飛び移っていくことで電流が流れますが、ドメインがあると、その境目では電子がうまく移動できなくなり、伝導度が下がることになります。しかし、完全に欠陥のない薄膜を作る方法は、今まで知られていませんでした。

 しかしごく最近、東工大の福島教授のグループから、この「完全敷き詰め」を実現した報告がなされました(Science 2015, 348, 1122)。マジックの種になったのは「トリプチセン」と呼ばれる分子で、図のように3枚羽根のプロペラに似た形をしています。硬く変形しにくい構造であるため、今までにも機能性分子の構築に用いられてきました(参考)。
trypticene
トリプチセン

 福島らは、トリプチセンの3枚のベンゼン環から、同じ方向に長いアルキル鎖が伸びた分子をデザインしました。トリプチセンの3枚羽根は、お互いに羽根の間にはまり込み、密に詰まったネットワークとなるのです。
(RO)3tryp
3本のアルキル鎖を持つトリプチセン


 この膜を放射光X線解析と呼ばれる手法で調べたところ、ドメイン境界を持たず、隅から隅までが全て規則的に並んでいることがわかりました。いろいろな方法で膜を作っても、全て完璧な単一ドメインとなっているのだそうです。

 どうしてこうなるのか?他の分子と同じように、いくつかの分子から同時進行で膜が広がってゆくのですが、ドメイン同士が出会うと互いに融合し、向きが自然に揃うことがわかりました。こうした構造は過去に例がなく、トリプチセン骨格の整列力の強さがわかります。単一ドメインでセンチメートル単位の薄膜が作れるといいますから、いわば畳をたくさんばらまいたら、ユーラシア大陸の果てまで畳が自発的に整列したことに相当します。

tiling
トリプチセン敷き詰めを上から見たところ

 アルキル鎖は簡単に取り替えが可能ですから、この先端に機能性の分子を取り付ければ、欠陥のない大面積の配列を作れることになります。また、アルキル鎖は3本でなく2本でも配列が可能ということですから、並べうる分子の自由度はさらに高くなりそうです。

 アルキル鎖がびっしり生えた表面は、いわば高密度のブラシに似ており、極めて平滑な炭化水素表面とみなすこともできます。アルキル鎖の代わりに、フッ素で覆われた鎖や、親水性の鎖を導入するとどうなるかとか、いろいろアイディアを膨らませてみたくなります。

 ごちゃごちゃ工夫を重ねた複雑な構造でなく、とにかくシンプルな分子、シンプルなアイディアで画期的な成果を実現したことが、大変に魅力的です。広く応用が利く、ロバストな方法となりそうで、今後の展開を注目すべき成果かと思います。