xritejapan

色管理(カラーマネジメント)のプロ、エックスライトジャパンのblog

色管理(カラーマネジメント)のスペシャリスト エックスライトジャパン社のブログです

濃度計

18 4月

HOW DESIGN LIVEでの発表内容はもうご確認いただけましたか?

エックスライトPantoneR は、色管理の科学やカラーマネジメントソリューションをご提供し、ブランドやコンバーターでパッケージのデザインや色の要求を実現するお手伝いをいたします。先週、アトランタにて「HOW Design LIVE2016」が開催され、エックスライトは出展いたしました。ここで発表されたデザイナーが求める色を実現する最新のカラーコントロールツールをご紹介いたします。

「HOW Design LIVE 」は単なるカンファレンスではなく、業界をリードするデザイナーや企業が一堂に会し、インスピレーションとクリエイティビティを披露する場です。弊社はこの名誉ある場において、PantoneLIVE Cloud™, PantoneLIVEDesigner, Digital Drawdowns, Digital Tolerances Guidesを発表しました。


 

イメージ 1

以上の図では、よく起こりがちな、パッケージの工程が進むにつれて、色が変わっていってしまう状況を説明しています。PantoneLIVEは、ターゲットとする色をデジタルカラーデータとしてを的確に共有することで、このような色の伝達のズレが発生する可能性を排除します。

 

今日は皆様に、「HOW Design LIVE」で公表した、弊社の最新技術をご紹介します。


 

1 PantoneLIVEクラウド

PantoneLIVEがあれば、サプライチェーンの全体が繋がり、より素早く正確なデジタルカラーを共有できるようになります(カラーマネジメントソリューション)。つまり、クライアントであるブランドとデザイナーが、インク、プリプレス、コンバーターや、印刷といった各工程の担当者たちと、全く同じデジタルカラーデータに基づき作業が行うことが可能となります。

 

イメージ 2

PantoneLIVE Librariesには現在、1万種類のPantone Colorsが蓄積されています。とはいえ、多くの場合、ブランド独自の色を利用する必要があることから、PantoneLIVEクラウドにはオリジナルカラーの生成機能も搭載いたしました。Tiffany、VeuveClicquotといった名だたるブランド企業で利用されるように、Pantoneカラーをつくることができます。ブランドカラーの拡散は防ぎたい、または、サプライヤーとのカラーデータの共有においてセキュリティを確保したいということであれば、「プライベートクラウド」をご活用いただけます。

 

イメージ 3

パントンカラーの一例「Veuve CliquotYellow」


 

2 AdobeR IllustratorR用PantoneLIVE デザイナーライセンス&プラグイン

わたしたちが色の言語をコミュニケーションするのはこのような方法です。エックスライトは最新のPantoneカラーをデザイナーが使うAdobeIllustratorに届け、デザイナーはエックスライトのプラグインツールでライブラリーを生成できます。Adobe Illustratorがデジタル・スタンダードにアクセスし、実際に最終のパッケージではどのような色の仕上がりになるかをより正確に確認することが可能になります。

イメージ 5

AdobeIllustrator でPantoneLive viewerを使えば、デザイナーは異なる素材でどのようにカラーが再現されるかを確認できます。この結果、求めるカラーと実現可能なカラーの間でどちらかを選ばなければならない状況もあるかもしれません。厳しい事実ですが、これは物理的に実現する際には避けられないことです。最終的には、どの素材を選ぶのか、どの印刷方式を選ぶのかは経済的観点からなされる場合が多いでしょう(カラーマネジメント印刷)。デザイナーがにカラーのコミュニケーション手段やツールを与えることは、最良の結果を予測し、実現する助けとなるでしょう。

 

イメージ 4

左の画像は、インクの色や印刷基材がどのようにデザインに影響を与えるかを示しています。PantoneLIVEをデザイナーが使えば、求める色が最終製品ではどのように見えるのかを知ることができ、クラフトペーパー用のスタンダードを使用することでより最適なカラーを実現することができたでしょう。デザイン段階と全く同じ色ではないかもしれませんが、このデザインが印刷に行く前にデザイナーは現実的な色を確認することができたでしょう。

 

3 Pantone Digital Drawdownsのご紹介

もちろん、プルーフや物的なサンプルは必要でしょう。しかし、デジタルカラーを導入することで、色に関わる不用意な誤解を最小限にとどめることができます。誰もが同じソースからデジタルカラーデータを取得できるシステムを構築することで、カラーの精度向上と市場導入までの時間が大幅に改善されるでしょう。

特定の素材で色がどのように見えるかを示す段階では、インキ会社に行ってドローダウンを取得する必要はもうありません(インクカラーソリューション)。弊社に蓄積された科学技術により、皆さんの作業工程を大幅に改善することができます。手作業により計測された高精度のデジタルドローダウンは、使いやすく、破れにくく、見本サンプル直接貼り付けて、プルーフや試作品やプレスシートの出来上がりを確認するのに便利です。

 

イメージ 6

 

4  Pantoneデジタルトリランスガイドのご紹介

さらに素晴らしいツールとして、デジタルトラレンスガイド(DegitalTolerance Guide)を活用し、予想される色の変化を視覚的に捉えることもできます。デルタE 2.0または3.0で「十分だろう」と考えていた昨日から 、“正確な色の変化の理解”ができるようになるでしょう。

イメージ 7

色の変化、デルタEがどのような見た目になるか考えでみたことはありますか?Pantoneデジタルトラレンスガイドで、その全てをご確認いただけます。

 

簡単に使え、色を事前に予測でき、色にまつわる議論の時間を大幅に減らし、意見の相違を現象することのできるツール(カラーマネジメントソリューション)、PantoneLIVECloud and Designer、DigitalDrawdownsそして、DigitalTolerances Guidesが確認作業を簡素化し、マーケットへの距離を一段と短くします。

詳しくは、無料のオンデマンド“パッケージデザイン&色の一貫性” ウェブセミナーをご覧ください!

 

 


20 3月

07_白紙基準濃度って何だ?

濃度測定の設定項目でもう一つ大切な要素が用紙濃度を含んだ濃度を測定するか、含まない濃度を測定するかという設定です。
用紙濃度を含まない設定は「マイナス用紙濃度」といったり「白紙基準濃度」、「相対濃度」「pap」などと呼んだりします。全て同じ意味です。
一方、用紙濃度を含む濃度は「絶対濃度」や「白色基準濃度」「abs」などと呼び、こちらも全て同じ測定モードになります。
 
マイナス用紙濃度は、単純に測定濃度から用紙の濃度を差し引いた濃度です。
図-12 の例をとると、マゼンタの測定(絶対)濃度が1.50として、用紙のマゼンタ濃度が0.08だとすると単純に1.50-0.08=1.42として1.42がマイナス用紙濃度となります。
 
なぜこの用紙濃度を差し引いた濃度を使用するのでしょうか?
これまで何度も説明してきましたようにインキ内の色材量のみに注目した濃度値が欲しいためです。
用紙の濃度はインキ塗膜内の色材量とは関係しません。ですのでこの分を差し引きたいわけです。
しかしながら、白紙濃度を差し引いただけで白紙基準や相対濃度といった呼び方は何か不自然なような気がしませんか?
私も当初はこれらの呼び方に違和感があったのですが、良く考えてみると、濃度は常用対数のlog10をとるわけですから、
反射率の逆数(吸光率と言っておきます...)10(濃度値)に戻した場合、
マイナス用紙濃度の場合の吸光率は10(絶対濃度-用紙濃度)、つまり10(絶対濃度)/10(用紙濃度)となり、
用紙濃度を基準とした比となることが分かります。
絶対濃度の場合は10(濃度値)の代わりに完全拡散白色の反射率=1の逆数、つまり1が使用されます。
このため白色基準などと呼ばれます。
 
 
絶対濃度とマイナス用紙濃度
図-12 絶対濃度とマイナス用紙濃度
 
この場合も絶対濃度とマイナス用紙濃度どちらを使用するかは状況によります。
生産現場、つまり印刷機横での色材量(インキ塗出量)管理ではマイナス用紙濃度の利用価値があると思います。
また、見た目の濃淡という意味では用紙の濃度も含んで判断するため、絶対濃度のほうが目視との相関に優れるといえます。
 
印刷の現場ではいずれを使用しても問題ないと思いますが、どちらかに決めて運用することが大切です。
 
これまで「濃度ステータス」や「POLについて」などでも濃度設定について取り上げてきましたが、これらの設定は大きく分けると2つの組み合わせに分けることができます。
 
1つは印刷現場での色材量(インキ塗出量など)管理のための指標としての濃度利用で、
「ステータスE」+「偏光フィルター(POL)あり」+「マイナス用紙濃度(pap)」
の組み合わせがよく使用されます。
 
2つ目はQA的というか見た目との相関を重視した濃度利用で、
「ステータスT」+「偏光フィルターなし」+「絶対濃度(abs)」
の組み合わせで使用されます。
 
濃度というのはどちらかというと最終製品における視覚的特性の基準に用いるというよりも、生産の現場における管理指標として使用される側面が大きいため日本では、比較的(1)での設定のほうが多く利用されているように思われます。
(ちなみに、米国では(2)が主流です。)
 
ただし、これらの組み合わせが一般的だというだけで、必ずしもこれらの組み合わせでなければ駄目だというわけではありません。
大切なことはこれらの設定が異なると濃度値が変わるということです。
このため、自社での濃度基準がどの設定で定義されているかを正しく認識し、常に同じ設定モードで濃度を運用することが大切です。
 
17 3月

06_POL?

POLというのは濃度測定時に使用するフィルターで、Polarization Filterの略で偏光フィルターを意味します。
濃度測定の際にこのフィルターを使用した測定を行うことで有効な情報が得られる場合があります。
 
偏光フィルターは通常濃度測定のみに使用し色彩値測定(たとえばL*a*b*測定)には使用しません。
偏光フィルターの役割は測定する光の成分から表面反射の影響を除きます。 
ですから、印刷物測定の場合、色材内部からの反射のみを評価したい場合に使用します。 印刷された基材(用紙)上のインキフィルムの塗膜内にどれだけ色材が含まれているかを判断する場合に有効なのです。
 
偏光フィルターによる測定の仕組みは、たとえば、照明する光をあらかじめ特定の方向に直線偏光させておいてからサンプルに照明します。
そうしておいて、受光側では照明側の偏光とは直交ニコルの方向性を持つ偏光フィルターを通して受光します。
 
通常、印刷物の観察のモデルおよび測定器の受光モデルは、図-9のように表面からの反射光と色材内部(基材での散乱も含む)からの内部反射の2つの要素を同時に受光して評価しています。
表面反射はインキがぬれた状態のウエットの場合と、乾燥後のドライの状態では反射状態が大きく変化します。 乾いたアスファルトの道路に水を撒くとアスファルトが濃く見えるようになりますが、これは、アスファルトの表面が撒かれた水によってスムーズになるため、表面反射が正反射方向に集中することで目に受光される表面反射の光量が小さくなるために生じます。 一方、色材内部からの内部反射は乾燥の前後で大きな変化はありません。このため、インキフィルム塗膜内の色材量を特定するには表面反射を除去した内部反射のみの測定が都合が良いのです。
 
 
POLフィルターなしの照明と受光
図-9 POLフィルターなしの照明と受光
 
POLフィルターを使用した測定では図-10のように表面反射の成分は受光器前のPOLフィルターでカットされてしまいます。 これは表面反射の光の性質が照明光の性質と同じ*ため、直交ニコルに配置したPOLフィルターをすり抜けることができないためです。
 
 
POLフィルターを使用した照明と受光
図-10 POLフィルターを使用した照明と受光
 
* 一般的に光子自体は特定の偏りを持っているとされています。ただ原子が放出する1つの光子は〖10〗^(-8)秒程度なので次から次へと放出される光子で構成される一連の光では平均化されて特定の偏りがありません。
POL測定では、直線偏光子などを使用して特定方向に偏りを持たせた光を照明として用います。
 
表面反射における反射光の偏りは、照明光の偏りと完全に同じというわけではありません。
たとえば、入射光面内に偏った光は屈折光の角度と直角となるブルースター角では全く反射されないため、偏光後の照明光から表面反射される光の一部は失われてしまいます。しかしながら、そうであったとしても、表面反射からの光は受光器前のPOLフィルターでブロックされてしまうため、内部反射のみの特性を受光できるということに変わりはありません。
 
このようなPOLフィルターのもう1つの大きな特徴は、高濃度部における濃度と色材濃度(インキ膜厚)との線形性の改善にあります。高濃度部ににおいては表面反射の影響が大きくなります。
つまり,暗い部分では表面からの少しの反射光でも濃度値に大きな影響をもたらすのです。
このため図-11にあるようにPOLなしの測定では高濃度部で濃度が頭打になり線形性が悪くなります。
これに対してPOLを使用した測定では方面反射による不要な拡散光が受光されないため高濃度部においても比較的良好な線形性を確保できることになります。
 
 
高濃度部におけるPOLあり/なしによる線形性の違い
図-11 高濃度部におけるPOLあり/なしによる線形性の違い
 
POLフィルターを使用した測定は、濃度でインキ膜厚(色材濃度)を管理するには効果的な方法といえます。
このため、印刷機の壷管理用の測定に(特にウエット・オン・ウエットのオフセット枚葉印刷では)多く使用されています。
ただ、私たちの実際の見た目の濃度は表面反射を含んだものを観察しています。このため、見た目との相関性を重視した濃度測定ではPOLを使用しません。また、色彩値測定などではPOLを使用した測定値は使用されません。
(POLを使用した色彩値はISOの色彩値とは認められていません。)
 
濃度測定にPOLを使用すべきか、使用すべきでないかは状況によります。
印刷の生産品質管理としては使用する価値は十分にあると思います。
しかし、かならずしもPOLを使用しなければならないということは無いと思います。
POLを使用しない場合のウエット濃度の測定では,ウエット濃度とドライダウン後の色彩値(L*a*b*)との相関をあらかじめキチンととった上で自社基準濃度(ハウス・スタンダード)を設定しておくことが重要になります。
 
いずれにしても、POLを使用した濃度測定を使用するか、POLを使用しない濃度測定を使用するか、どちらかにキチンと決めて運用することが重要になります。
 
6 3月

05_濃度を測定すると何が分かるの?

さて、色の管理カラーマネージメントとしては色彩値であるL*a*b*測定が中心となっている昨今、どうして依然として濃度値を使用するのでしょうか?
印刷における濃度測定値から派生する指標としてはドットゲイン、2次色トラッピング、コントラスト、グレーバランス、ヒューエラー、グレーネスなどさまざまなものがありますが、なんといってもベタ濃度の管理が最も重要な役割となります。
 
印刷の場合、濃度の変化は色材料の変化に直結します。
たとえばオフセット印刷の場合,図―7のように濃度とインキ膜厚との間に比較的線形な関係(比例の関係)があります。つまり濃度が高くなれば比例して膜厚が厚くなり顔料の混入量(色材濃度)が多くなるということに繋がります。
つまり、濃度∝インク膜厚∝色材量という関係が成立するわけです。
(ただし、グラフからも分かるように一定の濃度(膜厚)以上になると、その線形(直線)性が失われてきます。そのため、あまり高濃度になってくると濃度測定は意味を失ってくることになります。)
 
 
ベタインキのインキ膜厚と濃度の関係
図-7 ベタインキのインキ膜厚と濃度の関係
 
濃度が決まればその線形性から色材量が決まります。いつも同じインキを使用する場合、色材量が決まれば図-8のようにその分光反射率の形が決まってしまいます。つまり、色そのもの(色彩値)が一意に決定されることになります。
 
 
インキ色材量(膜厚)変化による分光反射率の変化
図-8インキ色材量(膜厚)変化による分光反射率の変化
 
印刷の現場では、いつも同じプロセスインキを使用することで、濃度を決めればその色彩値、さらに分光特性さえも決めることができるのです。濃度値は簡単な1つの指標で表わすことができますし、何よりコントロールが可能な色材量(オフセットの場合はインキ膜厚)とリンクしているため、現在でも印刷の現場では最も重要な指標として使用されているのです。
だって、L*a*b*やΔEで言われたって、印刷機をどうコントロールすれば良いか分からないでしょう!
 
ただし、ここでの条件は「同じインキを使用する場合は...」ということです。

同じインキでない場合、濃度を合わせても色はマッチしないのです。ですから、たとえばプルーフのベタ濃度を測定して本紙のベタ濃度をこれに合わせても、一般的に色は合いません。(プルーフと本紙では通常インクが異なるからです。)

この場合は,色彩値をあわせる必要があるのです。
 
下の2つのカラーパッチは濃度が両方とも1.05でも使用するインクが異なるため色がマッチしません。
 
 
両方とも1.05でも使用するインクが異なるため色がマッチしません
Y濃度=1.05    Y濃度=1.05
 
インクが異なるような場合、たとえばプルーフの特色に本紙で色をマッチさせるには濃度ではなく、色彩値を合わせて印刷する必要があるのです。
この場合は,ベストマッチという便利な機能を利用する方法があります。
ベストマッチは色彩値のマッチイングを濃度でガイドする機能です。このベストマッチについてはいつか詳しく説明します。

Xrite 印刷

 
3 3月

04_濃度ステータスTとE、あなたはどっちを使ってる?

前回、ステータスTとEを説明しましたが、それでは、ステータスTとEの どちらを使用すればいいのでしょうか?
 
印刷のプロセス印刷では、基本的にはどちらを使用しても良いと思います。
問題は常に同じステータスを使用することです。
あるときはステータスTを使用して、あるときはEを使用するといったことをしてはいけません。
ですから、自分の会社がどちらのステータスを使用しているかをキチンと認識していなくてはいけません。
どちらか判からない場合は、コート紙のイエローのベタ濃度をどの程度の濃度で印刷しているかを確認してください。
 
イエローのベタ濃度が0.95~1.05程度だとおそらくステータスTだと思われます。
これが1.25~1.35程度だと使用しているステータスはおそらくEでしょう。
図-5にステータスの典型的な値の例を示します。シアン、マゼンタ、ブラックではステータスTとEで
同じ値を示しています。
 
 
典型的なステータス濃度
図-5 典型的なステータス濃度
 
よく「ANSI TとかANSI EなどとISO T,ISO Eはどのように違うのか?」という質問を受けます。
ANSI TとISO Tは全く同じ濃度を指します。同様にANSI EとISO Eも全く同じものを指します。
測定器の販売された時期によって記載の仕方が異なっているだけです。
 
ステータスIはどのような濃度ステータスでしょうか?
 
ステータスIは狭帯域濃度のステータスで、典型的なプロセスインキのピーク吸収波長に応答のピークを合わせた重み付けをしています。ピーク波長がインキの特性とマッチしている場合、最大限の感度が得られ、 小さな膜厚変動で大きな濃度変化が得られます。しかし、その有効性はインキの特性に依存するため、ピーク波長が使用するインキとずれた場合、思わぬ波長的なデッドゾーンが発生する場合があります。
また、プロセスインキ以外では使用が難しいなどの問題もあるため一般的には使用されていません。
 
 
典型的なステータス濃度
図-6ステータスIのY,M,Cの重み付け
 
濃度計(測定器)によってステータスIがSPIと表記されている場合もありますが、これもISO Iと全く同じ意味になります。
 
その他の印刷用のステータスとしてはDINというものがあります。
DINはドイツの国家規格によるステータスでやはり広帯域の特性を持ちます。
DINにはDIN16536 (1995)、DIN16536 (1984)などがあります。また、古い濃度計測色計)ではDIN SPMと記載されたものもあります。
これらのステータスは全く同じものではなく、それぞれ微妙に異なった濃度を示します。
DINは古い規格でDIN16536 (1995)をベースとしてISO Eが国際規格として制定されています。このためFOGRAなどでもDINを使用しているユーザーにはISO Eへ移行するように推奨しています。ちなみにそれぞれのDINが少しずつ異なるように、ステータスEもDIN16536 (1995)と同じ濃度を示すわけではありません。
正確を期すならば自社の基準をステータスEで取り直すことをお勧めします。

 Xrite 印刷     光学濃度計

ギャラリー
  • 多角度分光測色計
  • 多角度分光測色計
  • 09_ビジュアルドットゲインとメカニカルドットゲイン
  • 09_ビジュアルドットゲインとメカニカルドットゲイン
  • 08_ドットゲインについて
  • 08_ドットゲインについて
  • 08_ドットゲインについて
  • 08_ドットゲインについて