ノーベル賞関連記事、とりわけ「メカニズム・デザイン」の解説を期待されている方には申し訳ありませんが、急用が入ってしまいそちらを先に片付けていました。もうしばらく記事のアップはお待ち下さい><
で、その急用が何だったかというと・・・

大学に通う妹の学科(理系)で研究室選びをする際に、私の研究するマッチング理論を使って何ができるかを簡単に説明して欲しい!(しかも明日まで!!)

という妹からの緊急要請。いや〜、ぶっちゃけ科研費の申請書類の作成や共同研究者とのメールのやり取りなどやらなければいけない事が山積みで、こんな事やってる場合ではないのかもしれないのですが、兄の研究者としての一面を見せるまたとないチャンス(笑)だったので思わず徹夜で取り掛かってしまいました。
先ほど原稿が完成したので、よろしければご覧下さい。

以下原稿


役に立つマッチングの理論:
『ゲイル=シャープレー・メカニズム』の使い方

政策研究大学院大学助教授
安田洋祐

【はじめに】
皆さんが直面している「研究室選び」は残りの学生生活の質や将来のキャリアパスを決定的に左右しかねない重要な問題だと思います。しかし個々の研究室に定員がある以上、全員が自分の一番行きたい研究室に行けるとは限りません。実際に、学生同士の相談に基づく旧来の「研究室選び」が本格化すれば、皆さんもおそらく「ある学生の希望を優先すれば別の学生が涙を飲む」といったジレンマに数多く直面することになるでしょう。
私が研究しているマッチングの理論は、このようなジレンマをできるだけ回避しつつシステマティックに望ましいマッチングを達成するための方法を考える経済学の一分野です。今回はこのマッチング理論の成果の中から、簡単に望ましいマッチングが実現できる夢のような方法として知られている『ゲイル=シャープレー・メカニズム』をご紹介させて頂きます(ゲイルとシャープレーは最初にこの方法を考案した研究者の名前です)。もちろんこのメカニズムを採用するかどうかは皆さん自身が決めることですが、一人でも多くの方にマッチング理論の有用性を知って頂ければ、と思います。それでは、以下で具体的に『ゲイル=シャープレー・メカニズム』の使い方について見ていきましょう!

【準備段階】
・それぞれの学生が自分の行きたい研究室のランキングを提出する
・個々の研究室(先生)も同様に、欲しい学生の優先順位(選考基準)を提出する

【マッチングの行い方】
第一ステップ:各学生をぞれぞれの第一希望の研究室に割り振る。定員数を越えなかった研究室では希望学生をその研究室に仮マッチさせる(あくまでこの段階ではである点に注意!)。定員を上回った研究室では、その研究室の選考基準に応じて上から順番に学生を選び定員の数だけ仮マッチさせる。ここで選考からもれてしまった学生は第二ステップに回る。
第二ステップ:第一ステップでもれた学生をそれぞれの第二希望の研究室に割り振る。個々の研究室において、第二ステップで移動した学生と既に仮マッチしている学生とを合わせて、先程と同じようにマッチングを行う。つまり、定員数が越えなかった場合には全員を仮マッチさせ、定員を上回った場合には優先順位の高い順に学生を仮マッチさせる。ここであふれた学生は第三ステップに回る。
・以下、選考からこぼれる学生が一人もいなくなるまで同様の手順を続ける(いかなる場合においても有限回でこのステップは終了するのでご安心下さい)。
・最終的にそれぞれの研究室と仮マッチしていた学生を正式に配属させる。

【この方法の望ましい点】
・学生側だけでなく、研究室もそれぞれ個別に学生の選考基準を提示することができる
先生サイドの意見を簡単に反映させることができる!
・ひとたびランキングを提出しさえすれば、機械的にマッチングを実現することができる
作業時間を短縮するとともに、余計な議論を通じて人間関係を損なう恐れがない!
・このメカニズムの下では、各学生は嘘をついて自分のランキングをいじっても一切得をすることができない
正直に自分のランキングを提出するのが最適!
・嫉妬が残る(【註】で詳しく説明します)マッチングが絶対に起こらない
→誰一人として理不尽な結果に陥る心配がない!
・嫉妬が残らないようなマッチングのうち、個々の学生にとって自分の手の届く範囲内の研究室で一番行きたいところに行ける
学生全員にとって最高の結果が達成できる!

【註】「嫉妬が残る」マッチングとは?
「自分の所属する研究室よりもランキングの高い研究室に、そこでの優先順位が自分よりも低い学生が何故か配属されている」という理不尽な思いをする学生が一人でもいる場合に、そのマッチングを嫉妬が残るマッチングと呼ぶことにします。
別の言い方をすると
学生:「わたし本当は今の研究室よりも先生の研究室に行きたかったんです♪」
先生:「なんだって!?実は僕も本当は今ウチにいる○○さんよりも君に是非来てもらいたかったんだ!」
という不幸な学生と先生の組が一組でもいる場合には、嫉妬が残るマッチングとなります。ゲイル=シャープレー・メカニズムはこのような不幸なペアを絶対に生み出すことがなく、しかも学生にとって最高の結果を実現することができる理想的なメカニズムなのです。

【終わりに】
マッチングは結婚、就職、学校選択といった人生の大問題をはじめとして、多くの重要な社会・経済問題と関わっています。そしてマッチングの理論は既にこういった現実の問題に対して具体的な解決策を提供し始めています。一例を挙げると、最近日本でも話題にのぼる機会が増えてきた学校選択制度の本場アメリカでは、実際に経済学者がアドバイザーとなって、マッチング理論の知見を生かした制度改革が進行中です。また、日本でも行われている医学部の研修医制度をめぐる学生と病院のマッチングでは、今回ご紹介したゲイル=シャープレー・メカニズムが用いられています。皆さんも、是非身近な問題(例えば「合コン」!?)でマッチング理論の有用性を試してみてはいかがでしょうか?